Multimodal driver emotion recognition using motor activity and facial expressions.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1467051
Carlos H Espino-Salinas, Huizilopoztli Luna-García, José M Celaya-Padilla, Cristian Barría-Huidobro, Nadia Karina Gamboa Rosales, David Rondon, Klinge Orlando Villalba-Condori
{"title":"Multimodal driver emotion recognition using motor activity and facial expressions.","authors":"Carlos H Espino-Salinas, Huizilopoztli Luna-García, José M Celaya-Padilla, Cristian Barría-Huidobro, Nadia Karina Gamboa Rosales, David Rondon, Klinge Orlando Villalba-Condori","doi":"10.3389/frai.2024.1467051","DOIUrl":null,"url":null,"abstract":"<p><p>Driving performance can be significantly impacted when a person experiences intense emotions behind the wheel. Research shows that emotions such as anger, sadness, agitation, and joy can increase the risk of traffic accidents. This study introduces a methodology to recognize four specific emotions using an intelligent model that processes and analyzes signals from motor activity and driver behavior, which are generated by interactions with basic driving elements, along with facial geometry images captured during emotion induction. The research applies machine learning to identify the most relevant motor activity signals for emotion recognition. Furthermore, a pre-trained Convolutional Neural Network (CNN) model is employed to extract probability vectors from images corresponding to the four emotions under investigation. These data sources are integrated through a unidimensional network for emotion classification. The main proposal of this research was to develop a multimodal intelligent model that combines motor activity signals and facial geometry images to accurately recognize four specific emotions (anger, sadness, agitation, and joy) in drivers, achieving a 96.0% accuracy in a simulated environment. The study confirmed a significant relationship between drivers' motor activity, behavior, facial geometry, and the induced emotions.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1467051"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1467051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Driving performance can be significantly impacted when a person experiences intense emotions behind the wheel. Research shows that emotions such as anger, sadness, agitation, and joy can increase the risk of traffic accidents. This study introduces a methodology to recognize four specific emotions using an intelligent model that processes and analyzes signals from motor activity and driver behavior, which are generated by interactions with basic driving elements, along with facial geometry images captured during emotion induction. The research applies machine learning to identify the most relevant motor activity signals for emotion recognition. Furthermore, a pre-trained Convolutional Neural Network (CNN) model is employed to extract probability vectors from images corresponding to the four emotions under investigation. These data sources are integrated through a unidimensional network for emotion classification. The main proposal of this research was to develop a multimodal intelligent model that combines motor activity signals and facial geometry images to accurately recognize four specific emotions (anger, sadness, agitation, and joy) in drivers, achieving a 96.0% accuracy in a simulated environment. The study confirmed a significant relationship between drivers' motor activity, behavior, facial geometry, and the induced emotions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信