A head-to-head comparison of the accuracy of commercially available large language models for infection prevention and control inquiries, 2024.

IF 3 4区 医学 Q2 INFECTIOUS DISEASES
Oluchi J Abosi, Takaaki Kobayashi, Natalie Ross, Alexandra Trannel, Guillermo Rodriguez Nava, Jorge L Salinas, Karen Brust
{"title":"A head-to-head comparison of the accuracy of commercially available large language models for infection prevention and control inquiries, 2024.","authors":"Oluchi J Abosi, Takaaki Kobayashi, Natalie Ross, Alexandra Trannel, Guillermo Rodriguez Nava, Jorge L Salinas, Karen Brust","doi":"10.1017/ice.2024.205","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the accuracy and completeness of four large language model (LLM) artificial intelligence tools. Most LLMs provided acceptable answers to commonly asked infection prevention questions (accuracy 98.9%, completeness 94.6%). The use of LLMs to supplement infection prevention consults should be further explored.</p>","PeriodicalId":13663,"journal":{"name":"Infection Control and Hospital Epidemiology","volume":" ","pages":"1-3"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Control and Hospital Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/ice.2024.205","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the accuracy and completeness of four large language model (LLM) artificial intelligence tools. Most LLMs provided acceptable answers to commonly asked infection prevention questions (accuracy 98.9%, completeness 94.6%). The use of LLMs to supplement infection prevention consults should be further explored.

用于感染预防和控制查询的商用大型语言模型的准确性的正面比较,2024。
我们研究了四种大型语言模型(LLM)人工智能工具的准确性和完整性。大多数法学硕士对常见感染预防问题提供了可接受的答案(准确率98.9%,完整性94.6%)。应进一步探索利用法学硕士补充感染预防会诊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
289
审稿时长
3-8 weeks
期刊介绍: Infection Control and Hospital Epidemiology provides original, peer-reviewed scientific articles for anyone involved with an infection control or epidemiology program in a hospital or healthcare facility. Written by infection control practitioners and epidemiologists and guided by an editorial board composed of the nation''s leaders in the field, ICHE provides a critical forum for this vital information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信