Digital Pathology-based Artificial Intelligence Biomarker Validation in Metastatic Prostate Cancer.

IF 8.3 1区 医学 Q1 ONCOLOGY
Mark C Markowski, Yi Ren, Meghan Tierney, Trevor J Royce, Rikiya Yamashita, Danielle Croucher, Huei-Chung Huang, Tamara Todorovic, Emmalyn Chen, Timothy N Showalter, Michael A Carducci, Yu-Hui Chen, Glenn Liu, Charles T A Parker, Andre Esteva, Felix Y Feng, Gerhardt Attard, Christopher J Sweeney
{"title":"Digital Pathology-based Artificial Intelligence Biomarker Validation in Metastatic Prostate Cancer.","authors":"Mark C Markowski, Yi Ren, Meghan Tierney, Trevor J Royce, Rikiya Yamashita, Danielle Croucher, Huei-Chung Huang, Tamara Todorovic, Emmalyn Chen, Timothy N Showalter, Michael A Carducci, Yu-Hui Chen, Glenn Liu, Charles T A Parker, Andre Esteva, Felix Y Feng, Gerhardt Attard, Christopher J Sweeney","doi":"10.1016/j.euo.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Owing to the expansion of treatment options for metastatic hormone-sensitive prostate cancer (mHSPC) and an appreciation of clinical subgroups with differential prognosis and treatment responses, prognostic and predictive biomarkers are needed to personalize care in this setting. Our aim was to evaluate a multimodal artificial intelligence (MMAI) biomarker for prognostic ability in mHSPC.</p><p><strong>Methods: </strong>We used data from the phase 3 CHAARTED trial; 456/790 patients with mHSPC had evaluable digital histopathology images and requisite clinical variables to generate MMAI scores for inclusion in our analysis. We assessed the association of MMAI score with overall survival (OS), clinical progression (CP), and castration-resistant PC (CRPC) via univariable Cox proportional-hazards and Fine-Gray models.</p><p><strong>Key findings and limitations: </strong>In the analysis cohort, 370 patients (81.1%) were classified as MMAI-high and 86 (18.9%) as MMAI-intermediate/low risk. Estimated 5-yr OS was 39% for the MMAI-high, 58% for the MMAI-intermediate, and 83% for the MMAI-low groups (log-rank p < 0.001). The MMAI score was associated with OS (hazard ratio [HR] 1.51, 95% confidence interval [CI] 1.33-1.73; p < 0.001), CP (subdistribution HR 1.54, 95% CI 1.36-1.74; p < 0.001), and CRPC (subdistribution HR 1.63, 95% CI 1.45-1.83; p < 0.001). The proportion of MMAI-high cases was 50.0%, 83.7%, 66.7%, and 92.1% in the subgroups with low-volume metachronous (n = 74), low-volume synchronous (n = 80), high-volume metachronous (n = 48), and high-volume synchronous (n = 254) mHSPC, respectively. The MMAI biomarker remained prognostic after adjustment for treatment, volume status, and diagnosis stage.</p><p><strong>Conclusions and clinical implications: </strong>Our findings show that the MMAI biomarker is prognostic for OS, CP, and CRPC among patients with mHSPC, regardless of clinical subgroup or treatment received. Further investigations of MMAI biomarkers in advanced PC are warranted.</p><p><strong>Patient summary: </strong>We looked at the performance of an artificial intelligence (AI) tool that interprets images of samples of prostate cancer tissue in a group of men whose cancer had spread beyond the prostate. The AI tool was able to identify patients at higher risk of worse outcomes. These results show the potential benefit of AI tools in helping patients and their health care team in making treatment decisions.</p>","PeriodicalId":12256,"journal":{"name":"European urology oncology","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European urology oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.euo.2024.11.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Owing to the expansion of treatment options for metastatic hormone-sensitive prostate cancer (mHSPC) and an appreciation of clinical subgroups with differential prognosis and treatment responses, prognostic and predictive biomarkers are needed to personalize care in this setting. Our aim was to evaluate a multimodal artificial intelligence (MMAI) biomarker for prognostic ability in mHSPC.

Methods: We used data from the phase 3 CHAARTED trial; 456/790 patients with mHSPC had evaluable digital histopathology images and requisite clinical variables to generate MMAI scores for inclusion in our analysis. We assessed the association of MMAI score with overall survival (OS), clinical progression (CP), and castration-resistant PC (CRPC) via univariable Cox proportional-hazards and Fine-Gray models.

Key findings and limitations: In the analysis cohort, 370 patients (81.1%) were classified as MMAI-high and 86 (18.9%) as MMAI-intermediate/low risk. Estimated 5-yr OS was 39% for the MMAI-high, 58% for the MMAI-intermediate, and 83% for the MMAI-low groups (log-rank p < 0.001). The MMAI score was associated with OS (hazard ratio [HR] 1.51, 95% confidence interval [CI] 1.33-1.73; p < 0.001), CP (subdistribution HR 1.54, 95% CI 1.36-1.74; p < 0.001), and CRPC (subdistribution HR 1.63, 95% CI 1.45-1.83; p < 0.001). The proportion of MMAI-high cases was 50.0%, 83.7%, 66.7%, and 92.1% in the subgroups with low-volume metachronous (n = 74), low-volume synchronous (n = 80), high-volume metachronous (n = 48), and high-volume synchronous (n = 254) mHSPC, respectively. The MMAI biomarker remained prognostic after adjustment for treatment, volume status, and diagnosis stage.

Conclusions and clinical implications: Our findings show that the MMAI biomarker is prognostic for OS, CP, and CRPC among patients with mHSPC, regardless of clinical subgroup or treatment received. Further investigations of MMAI biomarkers in advanced PC are warranted.

Patient summary: We looked at the performance of an artificial intelligence (AI) tool that interprets images of samples of prostate cancer tissue in a group of men whose cancer had spread beyond the prostate. The AI tool was able to identify patients at higher risk of worse outcomes. These results show the potential benefit of AI tools in helping patients and their health care team in making treatment decisions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.50
自引率
2.40%
发文量
128
审稿时长
20 days
期刊介绍: Journal Name: European Urology Oncology Affiliation: Official Journal of the European Association of Urology Focus: First official publication of the EAU fully devoted to the study of genitourinary malignancies Aims to deliver high-quality research Content: Includes original articles, opinion piece editorials, and invited reviews Covers clinical, basic, and translational research Publication Frequency: Six times a year in electronic format
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信