DNA methylation-based analysis reveals accelerated epigenetic aging in giant cell-enriched adult-type glioblastoma.

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY
Pinar Cakmak, Philipp Jurmeister, Iris Divé, Pia S Zeiner, Joachim P Steinbach, Tim R Fenton, Karl H Plate, Marcus Czabanka, Patrick N Harter, Katharina J Weber
{"title":"DNA methylation-based analysis reveals accelerated epigenetic aging in giant cell-enriched adult-type glioblastoma.","authors":"Pinar Cakmak, Philipp Jurmeister, Iris Divé, Pia S Zeiner, Joachim P Steinbach, Tim R Fenton, Karl H Plate, Marcus Czabanka, Patrick N Harter, Katharina J Weber","doi":"10.1186/s13148-024-01793-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Giant cell (gc)-enriched glioblastoma (gcGB) represents a distinct histological variant of isocitrate dehydrogenase wild-type adult-type glioblastoma with notable enlarged mono- or multinuclear tumor cells. While some studies suggest a survival advantage for gcGB patients, the underlying causes remain elusive. GcGBs are associated with TP53 mutations, and gcs were shown to accumulate DNA double-strand breaks and show deficient mitosis, potentially triggering cellular senescence programs. Epigenetic clocks have emerged as valuable tools for assessing tumor-induced age acceleration (DNAMethAgeAcc), which has lately proved itself as prognostic biomarker in glioblastoma. Our study aimed to comprehensively analyze the methylome and key metabolic proteins of gcGBs, hypothesizing that they undergo cellular aging programs compared to non-gcGBs.</p><p><strong>Results: </strong>A total of 310 epigenetically classified GBs, including 26 gcGBs, and nine adults with malignant gliomas allocating to pediatric high-grade glioma molecular subclasses (summarized as \"pediatric GB\") were included. DNAMethAgeAcc was computed by subtraction of chronological patient ages from DNA methylome-derived age estimations and its increase was associated with better survival within gcGB and non-gcGB. GcGBs were significantly more often allocated to the subgroup with increased DNAMethAgeAcc and demonstrated the highest DNAMethAgeAcc. Hypothetical senescence/aging-induced changes of the tumor microenvironment were addressed by tumor deconvolution, which was able to identify a cluster enriched for tumors with increased DNAMethAgeAcc. Key metabolic protein expression did not differ between gcGB and non-gcGB and tumor with versus without increased DNAMethAgeAcc but for elevated levels of one single mitochondrial marker, anti-mitochondrial protein MT-C02, in gcGBs.</p><p><strong>Conclusions: </strong>With its sped-up epigenetic aging, gcGB presented as the epigenetic oldest GB variant in our cohort. Whereas the correlation between accelerated tumor-intrinsic epigenetic aging and cellular senescence in gcGB stays elusive, fostering epigenetic aging programs in GB might be of interest for future exploration of alternative treatment options in GB patients.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"179"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01793-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Giant cell (gc)-enriched glioblastoma (gcGB) represents a distinct histological variant of isocitrate dehydrogenase wild-type adult-type glioblastoma with notable enlarged mono- or multinuclear tumor cells. While some studies suggest a survival advantage for gcGB patients, the underlying causes remain elusive. GcGBs are associated with TP53 mutations, and gcs were shown to accumulate DNA double-strand breaks and show deficient mitosis, potentially triggering cellular senescence programs. Epigenetic clocks have emerged as valuable tools for assessing tumor-induced age acceleration (DNAMethAgeAcc), which has lately proved itself as prognostic biomarker in glioblastoma. Our study aimed to comprehensively analyze the methylome and key metabolic proteins of gcGBs, hypothesizing that they undergo cellular aging programs compared to non-gcGBs.

Results: A total of 310 epigenetically classified GBs, including 26 gcGBs, and nine adults with malignant gliomas allocating to pediatric high-grade glioma molecular subclasses (summarized as "pediatric GB") were included. DNAMethAgeAcc was computed by subtraction of chronological patient ages from DNA methylome-derived age estimations and its increase was associated with better survival within gcGB and non-gcGB. GcGBs were significantly more often allocated to the subgroup with increased DNAMethAgeAcc and demonstrated the highest DNAMethAgeAcc. Hypothetical senescence/aging-induced changes of the tumor microenvironment were addressed by tumor deconvolution, which was able to identify a cluster enriched for tumors with increased DNAMethAgeAcc. Key metabolic protein expression did not differ between gcGB and non-gcGB and tumor with versus without increased DNAMethAgeAcc but for elevated levels of one single mitochondrial marker, anti-mitochondrial protein MT-C02, in gcGBs.

Conclusions: With its sped-up epigenetic aging, gcGB presented as the epigenetic oldest GB variant in our cohort. Whereas the correlation between accelerated tumor-intrinsic epigenetic aging and cellular senescence in gcGB stays elusive, fostering epigenetic aging programs in GB might be of interest for future exploration of alternative treatment options in GB patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信