Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0237304
Beatrice Cairo, Vlasta Bari, Francesca Gelpi, Beatrice De Maria, Franca Barbic, Raffaello Furlan, Alberto Porta
{"title":"Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome.","authors":"Beatrice Cairo, Vlasta Bari, Francesca Gelpi, Beatrice De Maria, Franca Barbic, Raffaello Furlan, Alberto Porta","doi":"10.1063/5.0237304","DOIUrl":null,"url":null,"abstract":"<p><p>There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0237304","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信