Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome.
Beatrice Cairo, Vlasta Bari, Francesca Gelpi, Beatrice De Maria, Franca Barbic, Raffaello Furlan, Alberto Porta
{"title":"Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome.","authors":"Beatrice Cairo, Vlasta Bari, Francesca Gelpi, Beatrice De Maria, Franca Barbic, Raffaello Furlan, Alberto Porta","doi":"10.1063/5.0237304","DOIUrl":null,"url":null,"abstract":"<p><p>There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0237304","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.