{"title":"3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model.","authors":"Jike Wang, Hao Luo, Rui Qin, Mingyang Wang, Xiaozhe Wan, Meijing Fang, Odin Zhang, Qiaolin Gou, Qun Su, Chao Shen, Ziyi You, Liwei Liu, Chang-Yu Hsieh, Tingjun Hou, Yu Kang","doi":"10.1039/d4sc06864e","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of three-dimensional (3D) molecules based on target structures represents a cutting-edge challenge in drug discovery. Many existing approaches often produce molecules with invalid configurations, unphysical conformations, suboptimal drug-like qualities, limited synthesizability, and require extensive generation times. To address these challenges, we present 3DSMILES-GPT, a fully language-model-driven framework for 3D molecular generation that utilizes tokens exclusively. We treat both two-dimensional (2D) and 3D molecular representations as linguistic expressions, combining them through full-dimensional representations and pre-training the model on a vast dataset encompassing tens of millions of drug-like molecules. This token-only approach enables the model to comprehensively understand the 2D and 3D characteristics of large-scale molecules. Subsequently, we fine-tune the model using pair-wise structural data of protein pockets and molecules, followed by reinforcement learning to further optimize the biophysical and chemical properties of the generated molecules. Experimental results demonstrate that 3DSMILES-GPT generates molecules that comprehensively outperform existing methods in terms of binding affinity, drug-likeness (QED), and synthetic accessibility score (SAS). Notably, it achieves a 33% enhancement in the quantitative estimation of QED, meanwhile the binding affinity estimated by Vina docking maintaining its state-of-the-art performance. The generation speed is remarkably fast, with the average time approximately 0.45 seconds per generation, representing a threefold increase over the fastest existing methods. This innovative 3DSMILES-GPT approach has the potential to positively impact the generation of 3D molecules in drug discovery.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06864e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of three-dimensional (3D) molecules based on target structures represents a cutting-edge challenge in drug discovery. Many existing approaches often produce molecules with invalid configurations, unphysical conformations, suboptimal drug-like qualities, limited synthesizability, and require extensive generation times. To address these challenges, we present 3DSMILES-GPT, a fully language-model-driven framework for 3D molecular generation that utilizes tokens exclusively. We treat both two-dimensional (2D) and 3D molecular representations as linguistic expressions, combining them through full-dimensional representations and pre-training the model on a vast dataset encompassing tens of millions of drug-like molecules. This token-only approach enables the model to comprehensively understand the 2D and 3D characteristics of large-scale molecules. Subsequently, we fine-tune the model using pair-wise structural data of protein pockets and molecules, followed by reinforcement learning to further optimize the biophysical and chemical properties of the generated molecules. Experimental results demonstrate that 3DSMILES-GPT generates molecules that comprehensively outperform existing methods in terms of binding affinity, drug-likeness (QED), and synthetic accessibility score (SAS). Notably, it achieves a 33% enhancement in the quantitative estimation of QED, meanwhile the binding affinity estimated by Vina docking maintaining its state-of-the-art performance. The generation speed is remarkably fast, with the average time approximately 0.45 seconds per generation, representing a threefold increase over the fastest existing methods. This innovative 3DSMILES-GPT approach has the potential to positively impact the generation of 3D molecules in drug discovery.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.