Seung Bae Rho, Boh-Ram Kim, Seung-Hoon Lee, Chang Hoon Lee
{"title":"Translationally Controlled Tumor Protein Enhances Angiogenesis in Ovarian Tumors by Activating Vascular Endothelial Growth Factor Receptor 2 Signaling.","authors":"Seung Bae Rho, Boh-Ram Kim, Seung-Hoon Lee, Chang Hoon Lee","doi":"10.4062/biomolther.2024.206","DOIUrl":null,"url":null,"abstract":"<p><p>Translationally controlled tumor protein (TCTP) is a regulatory protein that plays pivotal roles in cellular processes including the cell cycle, apoptosis, microtubule stabilization, embryo development, stress responses, and cancer. However, the molecular mechanism by which it promotes tumor angiogenesis is still unclear. In this study, we explored the mechanisms underlying stimulation of angiogenesis by a novel TCTP. Recombinant TCTP enhanced vascular endothelial growth factor (VEGF)-induced endothelial cell migration, capillary-like tubular structure formation, and cell proliferation by interacting with VEGF receptor 2 (VEGFR-2) <i>in vitro</i>. In contrast, we showed that TCTP knockdown (using short interfering [si]TCTP) led to a decrease in ovarian tumor cells. We also examined the expression of VEGF and hypoxia inducible factor 1 (HIF-1α), an important angiogenic factor. The expression of VEGF as well as HIF-1α was dramatically decreased by siTCTP. Mechanistically, siTCTP inhibited VEGFR-2 tyrosine phosphorylation and phosphorylation of its downstream targets PI3K, Akt, and mTOR. Collectively, these findings indicate that TCTP can promote proliferation and angiogenesis via the VEGFR-2/PI3K and mTOR signaling pathways in ovarian tumor cells, providing new insight into the mechanism behind the involvement of TCTP in tumor angiogenesis.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.206","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Translationally controlled tumor protein (TCTP) is a regulatory protein that plays pivotal roles in cellular processes including the cell cycle, apoptosis, microtubule stabilization, embryo development, stress responses, and cancer. However, the molecular mechanism by which it promotes tumor angiogenesis is still unclear. In this study, we explored the mechanisms underlying stimulation of angiogenesis by a novel TCTP. Recombinant TCTP enhanced vascular endothelial growth factor (VEGF)-induced endothelial cell migration, capillary-like tubular structure formation, and cell proliferation by interacting with VEGF receptor 2 (VEGFR-2) in vitro. In contrast, we showed that TCTP knockdown (using short interfering [si]TCTP) led to a decrease in ovarian tumor cells. We also examined the expression of VEGF and hypoxia inducible factor 1 (HIF-1α), an important angiogenic factor. The expression of VEGF as well as HIF-1α was dramatically decreased by siTCTP. Mechanistically, siTCTP inhibited VEGFR-2 tyrosine phosphorylation and phosphorylation of its downstream targets PI3K, Akt, and mTOR. Collectively, these findings indicate that TCTP can promote proliferation and angiogenesis via the VEGFR-2/PI3K and mTOR signaling pathways in ovarian tumor cells, providing new insight into the mechanism behind the involvement of TCTP in tumor angiogenesis.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.