Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis.

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Maitrayee Ghosh, Debajyoti Roy, Shubham Thakur, Amrinder Singh
{"title":"Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis.","authors":"Maitrayee Ghosh, Debajyoti Roy, Shubham Thakur, Amrinder Singh","doi":"10.1002/bdd.2400","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bdd.2400","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes: - animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites, - in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man - studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition, - simulation and modeling in drug discovery and development - theoretical treatises - includes themed issues and reviews and exclude manuscripts on - bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation - analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信