{"title":"Construction of Se-doped carbon encapsulated Cu<sub>2</sub>Se yolk-shell structure for long-life rechargeable aluminum batteries.","authors":"Gangyong Li, Siping Li, Zhi Li, Chen Li, Zhaodi Wang, Huan Li, Rui Chen, Miao Zhou, Bao Zhang, Zhaohui Hou","doi":"10.1016/j.jcis.2024.12.023","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated Cu<sub>2</sub>Se with yolk-shell structure (YS/Se-C@Cu<sub>2</sub>Se) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@Cu<sub>2</sub>Se cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1062-1072"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated Cu2Se with yolk-shell structure (YS/Se-C@Cu2Se) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@Cu2Se cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies