Spectroscopic Insight on Neodymium Solvation in Lithium Borohydride-Supported Electrolyte.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Abderrahman Atifi, Corey D Pilgrim, Christopher A Zarzana
{"title":"Spectroscopic Insight on Neodymium Solvation in Lithium Borohydride-Supported Electrolyte.","authors":"Abderrahman Atifi, Corey D Pilgrim, Christopher A Zarzana","doi":"10.1021/acs.jpcb.4c06917","DOIUrl":null,"url":null,"abstract":"<p><p>Borohydride-based electrolytes have recently emerged as promising media for the electrodeposition of electropositive metals, including rare earth (RE) elements. While the presence of supporting alkali metal cations and RE counteranions provides essential electrochemical conductivity for achieving fast metal electrodeposition, interactions between the host ligand and solvated neodymium (Nd) complexes remain unclear. This study provides insights into the coordination structure of a concentrated and directly solvated Nd salt in a lithium borohydride-supported electrolyte. Our spectroscopic results indicate that the RE coordination environment is significantly influenced by the solvation mechanism, which can vary between metathesis and complexation pathways, primarily dictated by stoichiometric factors. Under dilute conditions, nearly complete metathesis of anions leads to a high coordination number for the host ligand (borohydride), consistent with the previously reported solvated Nd speciation in chlorine-free electrolytes. In contrast, concentrated dissolution of the Nd salt in the supported electrolyte is dominated by a complexation pathway featuring a Li-ion-paired complex with a low coordination number of the host ligand. Density functional theory (DFT) calculations indicated that the observed blue shift in the borohydride vibration was the result of an increase in electron density drawn into the terminal B-H interbond region from the hydride as the coordination changed from Li to Nd. In conjunction with DFT results, vibrational analyses allowed correlation of the experimental shifts associated with changes in Nd ligation and coordination spheres, further consolidating the prevalence of highly chloride-coordinated species under concentrated conditions. The outcomes of this work illuminate the distinctive and heterogeneous coordination structures that the electroactive RE species can adopt at high concentrations in lithium borohydride-supported electrolytes, as a key step to comprehend the reported metal electrodeposition performance in these media.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06917","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Borohydride-based electrolytes have recently emerged as promising media for the electrodeposition of electropositive metals, including rare earth (RE) elements. While the presence of supporting alkali metal cations and RE counteranions provides essential electrochemical conductivity for achieving fast metal electrodeposition, interactions between the host ligand and solvated neodymium (Nd) complexes remain unclear. This study provides insights into the coordination structure of a concentrated and directly solvated Nd salt in a lithium borohydride-supported electrolyte. Our spectroscopic results indicate that the RE coordination environment is significantly influenced by the solvation mechanism, which can vary between metathesis and complexation pathways, primarily dictated by stoichiometric factors. Under dilute conditions, nearly complete metathesis of anions leads to a high coordination number for the host ligand (borohydride), consistent with the previously reported solvated Nd speciation in chlorine-free electrolytes. In contrast, concentrated dissolution of the Nd salt in the supported electrolyte is dominated by a complexation pathway featuring a Li-ion-paired complex with a low coordination number of the host ligand. Density functional theory (DFT) calculations indicated that the observed blue shift in the borohydride vibration was the result of an increase in electron density drawn into the terminal B-H interbond region from the hydride as the coordination changed from Li to Nd. In conjunction with DFT results, vibrational analyses allowed correlation of the experimental shifts associated with changes in Nd ligation and coordination spheres, further consolidating the prevalence of highly chloride-coordinated species under concentrated conditions. The outcomes of this work illuminate the distinctive and heterogeneous coordination structures that the electroactive RE species can adopt at high concentrations in lithium borohydride-supported electrolytes, as a key step to comprehend the reported metal electrodeposition performance in these media.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信