Influence of an Imposed Network on One- and Three-Dimensional Photonic Liquid Crystal Structures through the Polymer Template Technique.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Rajalaxmi Sahoo, Gayathri R Pisharody, D S Shankar Rao, C V Yelamaggad, S Krishna Prasad
{"title":"Influence of an Imposed Network on One- and Three-Dimensional Photonic Liquid Crystal Structures through the Polymer Template Technique.","authors":"Rajalaxmi Sahoo, Gayathri R Pisharody, D S Shankar Rao, C V Yelamaggad, S Krishna Prasad","doi":"10.1021/acs.jpcb.4c06196","DOIUrl":null,"url":null,"abstract":"<p><p>We describe the first investigations on the influence of an imposed network on the photonic band gap (PBG) structure of the liquid crystal (LC) phase through the polymer template technique. The technique consists of using a cholesteric (Ch) phase as a base for photopolymerizing a difunctional monomer, which is then removed after polymerization, leaving only the polymer scaffold template. The templated structure obtained is utilized to adjust the PBG structure of the filled LC material, exhibiting both a one-dimensional PBG (Ch phase) and a three-dimensional PBG structure (TGBC* phase with smectic C* blocks). Selective reflection measurements indicate that the imprint polymer network of the template impacts the pitch of the Ch and TGBC* phases. The absorption peaks are visible because of two distinct twisted arrangements, one originating from the template and the other from the refilled chiral substance. In the templated cell, the central wavelength (λ<sub>min</sub>) of PBG of the refilled sample red-shifts, as well as the width of the PBG gets enhanced compared to that for the sample in the regular (nontemplated) cell. For example, in the TGBC* phase, the λ<sub>min</sub> value red-shifts by 369 nm, and the width of the PBG enlarges by 50%. Additionally, the lattice spacing arising due to the periodicity of the SmC* helix in 2-dimension in the TGBC* phase gets enhanced. These findings demonstrate the polymer template method's effectiveness in tuning the mesophase's PBG in all three dimensions.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06196","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the first investigations on the influence of an imposed network on the photonic band gap (PBG) structure of the liquid crystal (LC) phase through the polymer template technique. The technique consists of using a cholesteric (Ch) phase as a base for photopolymerizing a difunctional monomer, which is then removed after polymerization, leaving only the polymer scaffold template. The templated structure obtained is utilized to adjust the PBG structure of the filled LC material, exhibiting both a one-dimensional PBG (Ch phase) and a three-dimensional PBG structure (TGBC* phase with smectic C* blocks). Selective reflection measurements indicate that the imprint polymer network of the template impacts the pitch of the Ch and TGBC* phases. The absorption peaks are visible because of two distinct twisted arrangements, one originating from the template and the other from the refilled chiral substance. In the templated cell, the central wavelength (λmin) of PBG of the refilled sample red-shifts, as well as the width of the PBG gets enhanced compared to that for the sample in the regular (nontemplated) cell. For example, in the TGBC* phase, the λmin value red-shifts by 369 nm, and the width of the PBG enlarges by 50%. Additionally, the lattice spacing arising due to the periodicity of the SmC* helix in 2-dimension in the TGBC* phase gets enhanced. These findings demonstrate the polymer template method's effectiveness in tuning the mesophase's PBG in all three dimensions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信