Tuning of Zr content in TiMn2 based multinary alloys by powder metallurgy to fabricate superior hydrogen storage properties.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-07 DOI:10.1016/j.jcis.2024.12.043
He Zhang, Zhihui Ma, Zhen Wang, Yong Liu, Fanxin Lin, Guodong Miao, Aimin Ju, Xuanhui Qu, Ping Li
{"title":"Tuning of Zr content in TiMn<sub>2</sub> based multinary alloys by powder metallurgy to fabricate superior hydrogen storage properties.","authors":"He Zhang, Zhihui Ma, Zhen Wang, Yong Liu, Fanxin Lin, Guodong Miao, Aimin Ju, Xuanhui Qu, Ping Li","doi":"10.1016/j.jcis.2024.12.043","DOIUrl":null,"url":null,"abstract":"<p><p>TiMn<sub>2</sub> based multinary alloys make full use of the high abundance of rare earth resources in attractive applications of hydrogen storage but suffer from mediocre hydrogen ab/desorption kinetics and lack the in-depth mechanism analysis of hydrogenation/dehydrogenation behavior. Herein, on the basis of current research on compositional modulation, we utilize the low-cost powder metallurgy method to prepare Ti<sub>0.9+x</sub>Zr<sub>0.1-x</sub>Mn<sub>1.4</sub>Cr<sub>0.4</sub>V<sub>0.2</sub> (x = -0.05, 0, 0.05) hydrogen storage alloy powders, which effectively reduces the preparation cost. What's more, the fractional substitution of Zr for Ti boosts the hydrogenation by introducing defects and modulating the d-band center. The synthesized Ti<sub>0.85</sub>Zr<sub>0.15</sub>Mn<sub>1.4</sub>Cr<sub>0.4</sub>V<sub>0.2</sub> hydrogen storage sample manifests exceptional hydrogen kinetics (almost no incubation) and hydrogen storage capacity (1.73 wt%). The intrinsic reaction mechanism of Zr substitution is elucidated from the viewpoint of microstructure and strain engineering, combined with density functional theory (DFT) analysis. This study provides valuable insights into the design and application of high-performance TiMn<sub>2</sub> based multinary hydrogen storage alloys.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1040-1050"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

TiMn2 based multinary alloys make full use of the high abundance of rare earth resources in attractive applications of hydrogen storage but suffer from mediocre hydrogen ab/desorption kinetics and lack the in-depth mechanism analysis of hydrogenation/dehydrogenation behavior. Herein, on the basis of current research on compositional modulation, we utilize the low-cost powder metallurgy method to prepare Ti0.9+xZr0.1-xMn1.4Cr0.4V0.2 (x = -0.05, 0, 0.05) hydrogen storage alloy powders, which effectively reduces the preparation cost. What's more, the fractional substitution of Zr for Ti boosts the hydrogenation by introducing defects and modulating the d-band center. The synthesized Ti0.85Zr0.15Mn1.4Cr0.4V0.2 hydrogen storage sample manifests exceptional hydrogen kinetics (almost no incubation) and hydrogen storage capacity (1.73 wt%). The intrinsic reaction mechanism of Zr substitution is elucidated from the viewpoint of microstructure and strain engineering, combined with density functional theory (DFT) analysis. This study provides valuable insights into the design and application of high-performance TiMn2 based multinary hydrogen storage alloys.

采用粉末冶金技术调整TiMn2基多元合金中Zr含量,制备出具有优异储氢性能的合金。
TiMn2基多元合金充分利用了稀土资源的高丰度,在储氢方面有很好的应用,但其吸氢/脱附动力学一般,缺乏对加氢/脱氢行为的深入机理分析。本文在现有成分调制研究的基础上,采用低成本的粉末冶金方法制备Ti0.9+xZr0.1-xMn1.4Cr0.4V0.2 (x = -0.05, 0,0.05)储氢合金粉末,有效降低了制备成本。Zr对Ti的分数取代通过引入缺陷和调节d带中心促进了氢化反应。合成的Ti0.85Zr0.15Mn1.4Cr0.4V0.2储氢样品表现出优异的氢动力学(几乎没有孵育)和储氢容量(1.73 wt%)。结合密度泛函理论(DFT)分析,从微观结构和应变工程的角度阐述了Zr取代的内在反应机理。该研究为高性能TiMn2基多元储氢合金的设计和应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信