Heterogeneous interfaces in confined microdomains of glycyrrhizic acid for polymorphism selection: Mechanisms and applications.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Weiqi Liu, Shiyuan Liu, Long Deng, Xiaoxiao Liang, Yanbin Jiang
{"title":"Heterogeneous interfaces in confined microdomains of glycyrrhizic acid for polymorphism selection: Mechanisms and applications.","authors":"Weiqi Liu, Shiyuan Liu, Long Deng, Xiaoxiao Liang, Yanbin Jiang","doi":"10.1016/j.jcis.2024.12.012","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanisms of heterogeneous nucleation to improve the precision and applicability of polymorphism selection remains challenging. In this study, the formation of confined microdomains with heterogeneous interfaces in the micelle and gel systems were reported based on the supramolecular self-assembly of glycyrrhizic acid. The polymorph with high-purity preparation of isonicotinamide and nicotinamide was achieved due to the high degree of supersaturation and diverse nucleation pathways. In situ spectroscopy and molecular simulations provided insights into the mechanism of polymorphism selection in molecular migration and cluster aggregation, revealing the influence of a heterogeneous templated effect and protonation effect during nucleation and growth. The selective induction of dominant polymorph with chain structure (Form II of isonicotinamide and Form ε of nicotinamide) validated the efficacy and applicability of this approach. Furthermore, the effective loading (up to 4-fold), enhanced stability (up to 2 months), and pH-responsive release of the dominant polymorphs exhibited the potential of glycyrrhizic acid systems for drug delivery. This study provides a promising approach for the selective induction and efficient delivery of dominant polymorphs, which contributes to a deeper understanding of heterogeneous nucleation.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1017-1027"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanisms of heterogeneous nucleation to improve the precision and applicability of polymorphism selection remains challenging. In this study, the formation of confined microdomains with heterogeneous interfaces in the micelle and gel systems were reported based on the supramolecular self-assembly of glycyrrhizic acid. The polymorph with high-purity preparation of isonicotinamide and nicotinamide was achieved due to the high degree of supersaturation and diverse nucleation pathways. In situ spectroscopy and molecular simulations provided insights into the mechanism of polymorphism selection in molecular migration and cluster aggregation, revealing the influence of a heterogeneous templated effect and protonation effect during nucleation and growth. The selective induction of dominant polymorph with chain structure (Form II of isonicotinamide and Form ε of nicotinamide) validated the efficacy and applicability of this approach. Furthermore, the effective loading (up to 4-fold), enhanced stability (up to 2 months), and pH-responsive release of the dominant polymorphs exhibited the potential of glycyrrhizic acid systems for drug delivery. This study provides a promising approach for the selective induction and efficient delivery of dominant polymorphs, which contributes to a deeper understanding of heterogeneous nucleation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信