S32, a Novel 3-Acetylaminocoumarin Compound, Exerts Neuroprotective Effects through the Inhibition of Neuroinflammation and Oxidative Stress In Vitro and In Vivo.
Xiao Zhang, Jiaqi Li, Jie Zhao, Ruting Liu, Sa Wang, Zhuang Liu, Xuehua Sun, Minghui Li, Yan Ren, Mingna Sun, Zhipeng Li
{"title":"S32, a Novel 3-Acetylaminocoumarin Compound, Exerts Neuroprotective Effects through the Inhibition of Neuroinflammation and Oxidative Stress <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Xiao Zhang, Jiaqi Li, Jie Zhao, Ruting Liu, Sa Wang, Zhuang Liu, Xuehua Sun, Minghui Li, Yan Ren, Mingna Sun, Zhipeng Li","doi":"10.1021/acschemneuro.4c00742","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation and oxidative stress are key factors leading to neuronal injury. In this study, we investigated the role of S32, a novel 3-acetylaminocoumarin compound, in ameliorating neuronal injury induced by neuroinflammation and oxidative stress <i>in vitro</i> and <i>in vivo</i>. First, we found that S32 reduced the expression levels of p-P65 and p-P38, inhibited the nuclear translocation of P65, and lowered the levels of pro-inflammatory factors in LPS-induced BV2 cells, which indicated that S32 had an antineuroinflammatory effect. Second, BV2 cell culture medium was used as the conditioned medium to establish a model of oxidative damage in PC12 cells. It was found that S32 reduced the level of ROS and increased mitochondrial membrane potential of PC12 cells, which indicated that S32 can protect PC12 cells against conditioned medium-induced injury. Next, we found that S32 inhibited the decrease of cell viability of PC12 cells caused by H<sub>2</sub>O<sub>2</sub>, inhibited nuclear damage, decreased the level of ROS, increased MMP, activated the AKT and ERK pathways, increased Bcl-2 levels, and decreased Bax and Cleaved-Caspase3 expression levels, indicating that S32 ameliorated the damaging effects of H<sub>2</sub>O<sub>2</sub>-induced PC12 cells. Finally, we found that S32 exerted the antineuroinflammatory and apoptosis-inhibiting effects in LPS-induced mice. In conclusion, this study first demonstrated that S32, a novel 3-acetylaminocoumarin compound, can reduce neuroinflammation and neuroinflammation-induced neuronal injury, exerting an indirect protective effect on neurons, and also exert a direct protective effect on neurons by reducing oxidative stress.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation and oxidative stress are key factors leading to neuronal injury. In this study, we investigated the role of S32, a novel 3-acetylaminocoumarin compound, in ameliorating neuronal injury induced by neuroinflammation and oxidative stress in vitro and in vivo. First, we found that S32 reduced the expression levels of p-P65 and p-P38, inhibited the nuclear translocation of P65, and lowered the levels of pro-inflammatory factors in LPS-induced BV2 cells, which indicated that S32 had an antineuroinflammatory effect. Second, BV2 cell culture medium was used as the conditioned medium to establish a model of oxidative damage in PC12 cells. It was found that S32 reduced the level of ROS and increased mitochondrial membrane potential of PC12 cells, which indicated that S32 can protect PC12 cells against conditioned medium-induced injury. Next, we found that S32 inhibited the decrease of cell viability of PC12 cells caused by H2O2, inhibited nuclear damage, decreased the level of ROS, increased MMP, activated the AKT and ERK pathways, increased Bcl-2 levels, and decreased Bax and Cleaved-Caspase3 expression levels, indicating that S32 ameliorated the damaging effects of H2O2-induced PC12 cells. Finally, we found that S32 exerted the antineuroinflammatory and apoptosis-inhibiting effects in LPS-induced mice. In conclusion, this study first demonstrated that S32, a novel 3-acetylaminocoumarin compound, can reduce neuroinflammation and neuroinflammation-induced neuronal injury, exerting an indirect protective effect on neurons, and also exert a direct protective effect on neurons by reducing oxidative stress.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research