Semi-quantum voting protocol with decentralization of vote verification and traceability

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Shujing Qiu, Xiangjun Xin, Qian Zheng, Chaoyang Li, Fagen Li
{"title":"Semi-quantum voting protocol with decentralization of vote verification and traceability","authors":"Shujing Qiu,&nbsp;Xiangjun Xin,&nbsp;Qian Zheng,&nbsp;Chaoyang Li,&nbsp;Fagen Li","doi":"10.1007/s11128-024-04604-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum voting protocol(QVP) allows the voters securely vote by checking the adversary’s eavesdropping on the quantum channels. However, most existing QVPs are based on complex quantum technologies and <i>n</i>-particle entangled states, which impose substantial requirements on quantum equipment. What is more, the larger the parameter <i>n</i>, the more difficult the preparation and preservation of the <i>n</i>-particle entangled states. Furthermore, in most of the protocols, there is an issue of excessive reliance on a single trusted center, who masters the power of both verifying the vote and tracing the voter’s identity, which renders them vulnerable to the security risks resulting from potential abuse of single center’s power. To address these challenges, a semi-quantum voting protocol(SQVP) with decentralization of vote verification and traceability is proposed. In our protocol, the center Trent and the scrutineer Bob are quantum party, while all the voters are classical partners. The center Trent can only get the information on the vote's content without knowing the voter's identity, while the scrutineer Bob can only trace the identity of the voter without knowing the content of the vote. Therefore, our protocol can prevent from the abuse of single center’s power. The protocol can effectively withstand various eavesdropping and forgery attacks. To our knowledge, our protocol is the first SQVP utilizing the Bell state. Compared to similar QVPs, our protocol is more practical while ensuring security.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04604-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum voting protocol(QVP) allows the voters securely vote by checking the adversary’s eavesdropping on the quantum channels. However, most existing QVPs are based on complex quantum technologies and n-particle entangled states, which impose substantial requirements on quantum equipment. What is more, the larger the parameter n, the more difficult the preparation and preservation of the n-particle entangled states. Furthermore, in most of the protocols, there is an issue of excessive reliance on a single trusted center, who masters the power of both verifying the vote and tracing the voter’s identity, which renders them vulnerable to the security risks resulting from potential abuse of single center’s power. To address these challenges, a semi-quantum voting protocol(SQVP) with decentralization of vote verification and traceability is proposed. In our protocol, the center Trent and the scrutineer Bob are quantum party, while all the voters are classical partners. The center Trent can only get the information on the vote's content without knowing the voter's identity, while the scrutineer Bob can only trace the identity of the voter without knowing the content of the vote. Therefore, our protocol can prevent from the abuse of single center’s power. The protocol can effectively withstand various eavesdropping and forgery attacks. To our knowledge, our protocol is the first SQVP utilizing the Bell state. Compared to similar QVPs, our protocol is more practical while ensuring security.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信