Influence of symmetry energy on electromagnetic field during heavy-ion collisions

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-12-13 DOI:10.1007/s12043-024-02860-w
Dhanpat Sharma, Suneel Kumar
{"title":"Influence of symmetry energy on electromagnetic field during heavy-ion collisions","authors":"Dhanpat Sharma,&nbsp;Suneel Kumar","doi":"10.1007/s12043-024-02860-w","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy-ion collision simulations in intermediate energy regime using isospin quantum molecular dynamics model have been proposed as a novel means to glean information about the high density behaviour of nuclear matter. Herein, the influence of modelling the pressure gradient by changing stiffness parameter and isospin asymmetry on the dynamics of charged particles have been investigated. In this research, three different values of stiffness parameter, <span>\\(\\gamma =\\)</span> 0.66 (soft), 1 (stiff) and 2 (super-stiff), to tune the anisotropic transverse pressure gradients have been considered to explore the influence of density-dependent symmetry energy </p><div><div><span>$$\\begin{aligned} &amp; E_{\\textrm{sym}}({\\rho })=E_{\\textrm{sym}}({\\rho _{0}}) \\bigg (\\frac{\\rho }{\\rho _{0}}\\bigg )^{\\gamma } \\end{aligned}$$</span></div></div><p>on the electromagnetic field and energy density evolution. Stiffer symmetry energy (<span>\\( \\gamma =\\)</span> 2) leads to larger pressure gradient than softer symmetry energy (<span>\\( \\gamma =\\)</span> 0.66) that drives stronger expansion resulting in higher intensity of <span>\\((eB_{y}(0, 0, 0))_{\\textrm{max}}\\)</span> and <span>\\(\\langle | \\vec {E}\\cdot \\vec {B}|\\rangle _{\\textrm{max}}\\)</span>. The correlation of eccentricity, nuclear stopping, centrality with the electromagnetic field and energy density have been established for different stiffness parameters. To deepen this study, the influence of isospin asymmetry (<i>N</i>/<i>Z</i>) on the time evolution of electromagnetic field has also been explored.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02860-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy-ion collision simulations in intermediate energy regime using isospin quantum molecular dynamics model have been proposed as a novel means to glean information about the high density behaviour of nuclear matter. Herein, the influence of modelling the pressure gradient by changing stiffness parameter and isospin asymmetry on the dynamics of charged particles have been investigated. In this research, three different values of stiffness parameter, \(\gamma =\) 0.66 (soft), 1 (stiff) and 2 (super-stiff), to tune the anisotropic transverse pressure gradients have been considered to explore the influence of density-dependent symmetry energy

$$\begin{aligned} & E_{\textrm{sym}}({\rho })=E_{\textrm{sym}}({\rho _{0}}) \bigg (\frac{\rho }{\rho _{0}}\bigg )^{\gamma } \end{aligned}$$

on the electromagnetic field and energy density evolution. Stiffer symmetry energy (\( \gamma =\) 2) leads to larger pressure gradient than softer symmetry energy (\( \gamma =\) 0.66) that drives stronger expansion resulting in higher intensity of \((eB_{y}(0, 0, 0))_{\textrm{max}}\) and \(\langle | \vec {E}\cdot \vec {B}|\rangle _{\textrm{max}}\). The correlation of eccentricity, nuclear stopping, centrality with the electromagnetic field and energy density have been established for different stiffness parameters. To deepen this study, the influence of isospin asymmetry (N/Z) on the time evolution of electromagnetic field has also been explored.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信