Monazite petrochronology dates Jurassic and Cretaceous cycles of prograde and retrograde metamorphism in the Funeral Mountains, California

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Suzanne Autrey-Mulligan, Michael L. Wells, Samuel J. S. Wright, Andrew Kylander-Clark
{"title":"Monazite petrochronology dates Jurassic and Cretaceous cycles of prograde and retrograde metamorphism in the Funeral Mountains, California","authors":"Suzanne Autrey-Mulligan,&nbsp;Michael L. Wells,&nbsp;Samuel J. S. Wright,&nbsp;Andrew Kylander-Clark","doi":"10.1007/s00410-024-02191-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pressure–temperature (P–T) modeling and U–Pb monazite petrochronology provide a detailed P–T-t history for the Funeral Mountains metamorphic core complex, revealing different aspects of the geologic history at different structural depths and enabling the dating of tectonic mode switching cycles in the southwestern US Cordillera. Monazite petrochronology and yttrium X-ray element maps reveal several generations of monazite that formed during the Jurassic to Late Cretaceous. In the Monarch Canyon study area, the staurolite-out isograd separates samples with predominantly Jurassic monazite from those with predominantly Cretaceous monazite. Monazite grains yielding Jurassic to Early Cretaceous dates are chemically distinct from those yielding mid- and Late Cretaceous dates. Jurassic monazite dates from the Funeral Mountains record both prograde and retrograde metamorphism, with the latter associated with garnet breakdown during decompression. Heavy rare earth elements and yttrium (HREE + Y) in a mid-Cretaceous 104 to 88 Ma monazite population link recrystallization to prograde garnet growth from staurolite breakdown, and in a Late Cretaceous 88 to 74 Ma population to retrograde garnet breakdown via a reversal of the staurolite breakdown reaction. Modeling and mineral textures indicate peak metamorphic conditions of 6–10 kbar at ca. 650–700 °C in the structurally deepest rocks in Monarch Canyon. In contrast, structurally shallower rocks experienced peak temperatures between 610 and 650 ºC during Jurassic metamorphism. Monazite petrochronology elucidates the progression of monazite dissolution-reprecipitation along this P–T path. Modeling reactions and mineral stability link specific reactions to changes to the HREE + Y concentrations in monazite, particularly related to garnet and staurolite reactions. This dataset, in conjunction with previous studies, enables the timing and duration of tectonic mode switching cycles in the Funeral Mountains to be quantified, improving our understanding of the complex geological evolution of this core complex.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02191-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure–temperature (P–T) modeling and U–Pb monazite petrochronology provide a detailed P–T-t history for the Funeral Mountains metamorphic core complex, revealing different aspects of the geologic history at different structural depths and enabling the dating of tectonic mode switching cycles in the southwestern US Cordillera. Monazite petrochronology and yttrium X-ray element maps reveal several generations of monazite that formed during the Jurassic to Late Cretaceous. In the Monarch Canyon study area, the staurolite-out isograd separates samples with predominantly Jurassic monazite from those with predominantly Cretaceous monazite. Monazite grains yielding Jurassic to Early Cretaceous dates are chemically distinct from those yielding mid- and Late Cretaceous dates. Jurassic monazite dates from the Funeral Mountains record both prograde and retrograde metamorphism, with the latter associated with garnet breakdown during decompression. Heavy rare earth elements and yttrium (HREE + Y) in a mid-Cretaceous 104 to 88 Ma monazite population link recrystallization to prograde garnet growth from staurolite breakdown, and in a Late Cretaceous 88 to 74 Ma population to retrograde garnet breakdown via a reversal of the staurolite breakdown reaction. Modeling and mineral textures indicate peak metamorphic conditions of 6–10 kbar at ca. 650–700 °C in the structurally deepest rocks in Monarch Canyon. In contrast, structurally shallower rocks experienced peak temperatures between 610 and 650 ºC during Jurassic metamorphism. Monazite petrochronology elucidates the progression of monazite dissolution-reprecipitation along this P–T path. Modeling reactions and mineral stability link specific reactions to changes to the HREE + Y concentrations in monazite, particularly related to garnet and staurolite reactions. This dataset, in conjunction with previous studies, enables the timing and duration of tectonic mode switching cycles in the Funeral Mountains to be quantified, improving our understanding of the complex geological evolution of this core complex.

独居石岩石年代学测定了加利福尼亚丧礼山侏罗纪和白垩纪的进、退变质旋回
压力-温度(P-T)模拟和U-Pb单殖石岩石年代学为Funeral Mountains变质核杂岩提供了详细的P-T -t历史,揭示了不同构造深度地质历史的不同方面,并为美国西南部Cordillera构造模式转换旋回的定年提供了依据。独居石年代学和钇x射线元素图揭示了侏罗纪至晚白垩世形成的几代独居石。在君主峡谷的研究区,从白垩纪独居石中分离出了以侏罗纪独居石为主的样品和以白垩纪独居石为主的样品。产自侏罗纪至早白垩世的独居石颗粒在化学上与产自中白垩世和晚白垩世的独居石颗粒不同。丧葬山侏罗纪独居石记录了前向变质和逆行变质,后向变质与减压过程中石榴石的破裂有关。中白垩世104 ~ 88 Ma独居石群中的重稀土元素和钇(ree + Y)将再结晶与小沸石破裂后的石榴石生长联系起来,而在晚白垩世88 ~ 74 Ma独居石群中,重稀土元素和钇通过逆转小沸石破裂反应使石榴石逆行破裂。模拟和矿物结构表明,在君主峡谷结构最深的岩石中,6-10 kbar的峰值变质条件约为650-700°C。相比之下,构造较浅的岩石在侏罗纪变质作用时期的峰值温度在610 ~ 650℃之间。单氮石岩石年代学阐明了单氮石沿P-T路径的溶解-再沉淀过程。模拟反应和矿物稳定性将特定反应与独居石中ree + Y浓度的变化联系起来,特别是与石榴石和橄榄石反应有关。该数据集与前人的研究成果相结合,可以量化丧葬山构造模式转换旋回的时间和持续时间,提高我们对该核心杂岩复杂地质演化的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信