{"title":"Can neural networks estimate parameters in epidemiology models using real observed data?","authors":"Muhammad Jalil Ahmad, Korhan Günel","doi":"10.1007/s10489-024-06012-w","DOIUrl":null,"url":null,"abstract":"<div><p>The primary objective of this study is to address the challenges associated with estimating parameters in mathematical epidemiology models, which are crucial for understanding the dynamics of infectious diseases within a population. The scope of this research includes the development and application of a two-phase neural network for parameter estimation, specifically within the context of epidemic compartmental models. This study presents a novel approach by integrating an extreme learning machine with a heuristic population-based optimization method within a two-phase neural network framework. The networks are driven by a heuristic population-based optimization method, enhancing the accuracy and efficiency of parameter estimation in mathematical epidemiology models. The effectiveness of the method is validated using actual COVID-19 data provided by the Turkish Ministry of Health. The data includes cases categorized as Susceptible, Exposed, Infected, Removed, and Deceased, which are crucial components of epidemic compartmental models. The obtained results highlight the capability of the proposed method to provide insights into the spread of infectious diseases by offering reliable estimates of model parameters. This, in turn, supports better understanding and forecasting of disease dynamics. The methodology provides a significant contribution to the field by offering a new, efficient technique for parameter estimation in epidemiological models.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06012-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objective of this study is to address the challenges associated with estimating parameters in mathematical epidemiology models, which are crucial for understanding the dynamics of infectious diseases within a population. The scope of this research includes the development and application of a two-phase neural network for parameter estimation, specifically within the context of epidemic compartmental models. This study presents a novel approach by integrating an extreme learning machine with a heuristic population-based optimization method within a two-phase neural network framework. The networks are driven by a heuristic population-based optimization method, enhancing the accuracy and efficiency of parameter estimation in mathematical epidemiology models. The effectiveness of the method is validated using actual COVID-19 data provided by the Turkish Ministry of Health. The data includes cases categorized as Susceptible, Exposed, Infected, Removed, and Deceased, which are crucial components of epidemic compartmental models. The obtained results highlight the capability of the proposed method to provide insights into the spread of infectious diseases by offering reliable estimates of model parameters. This, in turn, supports better understanding and forecasting of disease dynamics. The methodology provides a significant contribution to the field by offering a new, efficient technique for parameter estimation in epidemiological models.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.