Slark: A Performance Robust Decentralized Inter-Datacenter Deadline-Aware Coflows Scheduling Framework With Local Information

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Xiaodong Dong;Lihai Nie;Zheli Liu;Yang Xiang
{"title":"Slark: A Performance Robust Decentralized Inter-Datacenter Deadline-Aware Coflows Scheduling Framework With Local Information","authors":"Xiaodong Dong;Lihai Nie;Zheli Liu;Yang Xiang","doi":"10.1109/TPDS.2024.3508275","DOIUrl":null,"url":null,"abstract":"Inter-datacenter network applications generate massive coflows for purposes, e.g., backup, synchronization, and analytics, with deadline requirements. Decentralized coflow scheduling frameworks are desirable for their scalability in cross-domain deployment but grappling with the challenge of information agnosticism for lack of cross-domain privileges. Current information-agnostic coflow scheduling methods are incompatible with decentralized frameworks for relying on centralized controllers to continuously monitor and learn from coflow global transmission states to infer global coflow information. Alternative methods propose mechanisms for decentralized global coflow information gathering and synchronization. However, they require dedicated physical hardware or control logic, which could be impractical for incremental deployment. This article proposes Slark, a decentralized deadline-aware coflow scheduling framework, which meets coflows’ soft and hard deadline requirements using only local traffic information. It eschews requiring global coflow transmission states and dedicated hardware or control logic by leveraging multiple software-implemented scheduling agents working independently on each node and integrating such information agnosticism into node-specific bandwidth allocation by modeling it as a robust optimization problem with flow information on the other nodes represented as uncertain parameters. Subsequently, we validate the performance robustness of Slark by investigating how perturbations in the optimal objective function value and the associated optimal solution are affected by uncertain parameters. Finally, we propose a firebug-swarm-optimization-based heuristic algorithm to tackle the non-convexity in our problem. Experimental results demonstrate that Slark can significantly enhance transmission revenue and increase soft and hard deadline guarantee ratios by 10.52% and 7.99% on average.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"197-211"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10770555/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Inter-datacenter network applications generate massive coflows for purposes, e.g., backup, synchronization, and analytics, with deadline requirements. Decentralized coflow scheduling frameworks are desirable for their scalability in cross-domain deployment but grappling with the challenge of information agnosticism for lack of cross-domain privileges. Current information-agnostic coflow scheduling methods are incompatible with decentralized frameworks for relying on centralized controllers to continuously monitor and learn from coflow global transmission states to infer global coflow information. Alternative methods propose mechanisms for decentralized global coflow information gathering and synchronization. However, they require dedicated physical hardware or control logic, which could be impractical for incremental deployment. This article proposes Slark, a decentralized deadline-aware coflow scheduling framework, which meets coflows’ soft and hard deadline requirements using only local traffic information. It eschews requiring global coflow transmission states and dedicated hardware or control logic by leveraging multiple software-implemented scheduling agents working independently on each node and integrating such information agnosticism into node-specific bandwidth allocation by modeling it as a robust optimization problem with flow information on the other nodes represented as uncertain parameters. Subsequently, we validate the performance robustness of Slark by investigating how perturbations in the optimal objective function value and the associated optimal solution are affected by uncertain parameters. Finally, we propose a firebug-swarm-optimization-based heuristic algorithm to tackle the non-convexity in our problem. Experimental results demonstrate that Slark can significantly enhance transmission revenue and increase soft and hard deadline guarantee ratios by 10.52% and 7.99% on average.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信