JEP-KD: Joint-Embedding Predictive Architecture Based Knowledge Distillation for Visual Speech Recognition

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chang Sun;Bo Qin;Hong Yang
{"title":"JEP-KD: Joint-Embedding Predictive Architecture Based Knowledge Distillation for Visual Speech Recognition","authors":"Chang Sun;Bo Qin;Hong Yang","doi":"10.1109/OJSP.2024.3496819","DOIUrl":null,"url":null,"abstract":"Visual Speech Recognition (VSR) tasks are generally recognized to have a lower theoretical performance ceiling than Automatic Speech Recognition (ASR), owing to the inherent limitations of conveying semantic information visually. To mitigate this challenge, this paper introduces an advanced knowledge distillation approach using a Joint-Embedding Predictive Architecture (JEPA), JEP-KD, designed to utilize audio features more effectively during model training. Central to JEP-KD is including a generative network within the embedding layer in the knowledge distillation structure, which enhances the video encoder's capacity for semantic feature extraction and brings it closer to the audio features from a pre-trained ASR model's encoder. This approach aims to reduce the performance gap between VSR and ASR progressively. Moreover, a comprehensive multimodal, multistage training regimen for the JEP-KD framework is established, bolstering the robustness and efficacy of the training process. Experiment results demonstrate that JEP-KD significantly improves the performance of VSR models and demonstrates versatility across different VSR platforms, indicating its potential for broader application within other multimodal tasks.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1147-1152"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750407/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Visual Speech Recognition (VSR) tasks are generally recognized to have a lower theoretical performance ceiling than Automatic Speech Recognition (ASR), owing to the inherent limitations of conveying semantic information visually. To mitigate this challenge, this paper introduces an advanced knowledge distillation approach using a Joint-Embedding Predictive Architecture (JEPA), JEP-KD, designed to utilize audio features more effectively during model training. Central to JEP-KD is including a generative network within the embedding layer in the knowledge distillation structure, which enhances the video encoder's capacity for semantic feature extraction and brings it closer to the audio features from a pre-trained ASR model's encoder. This approach aims to reduce the performance gap between VSR and ASR progressively. Moreover, a comprehensive multimodal, multistage training regimen for the JEP-KD framework is established, bolstering the robustness and efficacy of the training process. Experiment results demonstrate that JEP-KD significantly improves the performance of VSR models and demonstrates versatility across different VSR platforms, indicating its potential for broader application within other multimodal tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信