Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhuangzhuang Zhang;Libing Wu;Debiao He;Jianxin Li;Na Lu;Xuejiang Wei
{"title":"Using Third-Party Auditor to Help Federated Learning: An Efficient Byzantine-Robust Federated Learning","authors":"Zhuangzhuang Zhang;Libing Wu;Debiao He;Jianxin Li;Na Lu;Xuejiang Wei","doi":"10.1109/TSUSC.2024.3379440","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL), as a distributed machine learning technique, has promise for training models with distributed data in Artificial Intelligence of Things (AIoT). However, FL is vulnerable to Byzantine attacks from diverse participants. While numerous Byzantine-robust FL solutions have been proposed, most of them involve deploying defenses at either the aggregation server or the participant level, significantly impacting the original FL process. Moreover, it will bring extra computational burden to the server or the participant, which is especially unsuitable for the resource-constrained AIoT domain. To resolve the aforementioned concerns, we propose FL-Auditor, a Byzantine-robust FL approach based on public auditing. Its core idea is to use a Third-Party Auditor (TPA) to audit samples from the FL training process, analyzing the trustworthiness of different participants, thereby helping FL obtain a more robust global model. In addition, we also design a lazy update mechanism to reduce the negative impact of sampling audit on the performance of the global model. Extensive experiments have demonstrated the effectiveness of our FL-Auditor in terms of accuracy, robustness against attacks, and flexibility. In particular, compared to the existing method, our FL-Auditor significantly reduces the computation time on the aggregation server by 8×-17×.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"848-861"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10475552/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL), as a distributed machine learning technique, has promise for training models with distributed data in Artificial Intelligence of Things (AIoT). However, FL is vulnerable to Byzantine attacks from diverse participants. While numerous Byzantine-robust FL solutions have been proposed, most of them involve deploying defenses at either the aggregation server or the participant level, significantly impacting the original FL process. Moreover, it will bring extra computational burden to the server or the participant, which is especially unsuitable for the resource-constrained AIoT domain. To resolve the aforementioned concerns, we propose FL-Auditor, a Byzantine-robust FL approach based on public auditing. Its core idea is to use a Third-Party Auditor (TPA) to audit samples from the FL training process, analyzing the trustworthiness of different participants, thereby helping FL obtain a more robust global model. In addition, we also design a lazy update mechanism to reduce the negative impact of sampling audit on the performance of the global model. Extensive experiments have demonstrated the effectiveness of our FL-Auditor in terms of accuracy, robustness against attacks, and flexibility. In particular, compared to the existing method, our FL-Auditor significantly reduces the computation time on the aggregation server by 8×-17×.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信