APPQ-CNN: An Adaptive CNNs Inference Accelerator for Synergistically Exploiting Pruning and Quantization Based on FPGA

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xian Zhang;Guoqing Xiao;Mingxing Duan;Yuedan Chen;Kenli Li
{"title":"APPQ-CNN: An Adaptive CNNs Inference Accelerator for Synergistically Exploiting Pruning and Quantization Based on FPGA","authors":"Xian Zhang;Guoqing Xiao;Mingxing Duan;Yuedan Chen;Kenli Li","doi":"10.1109/TSUSC.2024.3382157","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) are widely utilized in intelligent edge computing applications such as computational vision and image processing. However, as the number of layers of the CNN model increases, the number of parameters and computations gets larger, making it increasingly challenging to accelerate in edge computing applications. To effectively adapt to the tradeoff between the speed and accuracy of CNNs inference for smart applications. This paper proposes an FPGA-based adaptive CNNs inference accelerator synergistically utilizing filter pruning, fixed-point parameter quantization, and multi-computing unit parallelism called APPQ-CNN. First, the article devises a hybrid pruning algorithm based on the L1-norm and APoZ to measure the filter impact degree and a configurable parameter quantization fixed-point computing architecture instead of floating-point architecture. Then, design a cascade of the CNN pipelined kernel architecture and configurable multiple computation units. Finally, conduct extensive performance exploration and comparison experiments on various real and synthetic datasets. With negligible accuracy loss, the speed performance of our accelerator APPQ-CNN compares with current state-of-the-art FPGA-based accelerators PipeCNN and OctCNN by 2.15× and 1.91×, respectively. Furthermore, APPQ-CNN provides settable fixed-point quantization bit-width parameters, filter pruning rate, and multiple computation unit counts to cope with practical application performance requirements in edge computing.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"874-888"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10480451/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) are widely utilized in intelligent edge computing applications such as computational vision and image processing. However, as the number of layers of the CNN model increases, the number of parameters and computations gets larger, making it increasingly challenging to accelerate in edge computing applications. To effectively adapt to the tradeoff between the speed and accuracy of CNNs inference for smart applications. This paper proposes an FPGA-based adaptive CNNs inference accelerator synergistically utilizing filter pruning, fixed-point parameter quantization, and multi-computing unit parallelism called APPQ-CNN. First, the article devises a hybrid pruning algorithm based on the L1-norm and APoZ to measure the filter impact degree and a configurable parameter quantization fixed-point computing architecture instead of floating-point architecture. Then, design a cascade of the CNN pipelined kernel architecture and configurable multiple computation units. Finally, conduct extensive performance exploration and comparison experiments on various real and synthetic datasets. With negligible accuracy loss, the speed performance of our accelerator APPQ-CNN compares with current state-of-the-art FPGA-based accelerators PipeCNN and OctCNN by 2.15× and 1.91×, respectively. Furthermore, APPQ-CNN provides settable fixed-point quantization bit-width parameters, filter pruning rate, and multiple computation unit counts to cope with practical application performance requirements in edge computing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信