ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Muhammed Golec;Sukhpal Singh Gill;Felix Cuadrado;Ajith Kumar Parlikad;Minxian Xu;Huaming Wu;Steve Uhlig
{"title":"ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments","authors":"Muhammed Golec;Sukhpal Singh Gill;Felix Cuadrado;Ajith Kumar Parlikad;Minxian Xu;Huaming Wu;Steve Uhlig","doi":"10.1109/TSUSC.2023.3348157","DOIUrl":null,"url":null,"abstract":"Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and \n<inline-formula><tex-math>$CO_{2}$</tex-math></inline-formula>\n emission amount of these models are evaluated and compared for the training and prediction phases.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"817-829"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10376318/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and $CO_{2}$ emission amount of these models are evaluated and compared for the training and prediction phases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信