FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jinbo Wang;Ruijin Wang;Guangquan Xu;Donglin He;Xikai Pei;Fengli Zhang;Jie Gan
{"title":"FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing","authors":"Jinbo Wang;Ruijin Wang;Guangquan Xu;Donglin He;Xikai Pei;Fengli Zhang;Jie Gan","doi":"10.1109/TSUSC.2024.3374049","DOIUrl":null,"url":null,"abstract":"Federated learning is a distributed learning paradigm, which is usually combined with edge computing to meet the joint training of IoT devices. A significant challenge in federated learning lies in the statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) local data across diverse parties. This heterogeneity can result in inconsistent optimization within individual local models. Although previous research has endeavored to tackle issues stemming from heterogeneous data, our findings indicate that these attempts have not yielded high-performance neural network models. To overcome this fundamental challenge, we introduce the framework called FedPKR in this paper, which facilitates efficient federated learning through knowledge review. The core principle of FedPKR involves leveraging the knowledge representation generated by the global and local model layers to conduct periodic layer-by-layer comparative learning in a reciprocal manner. This strategy rectifies local model training, leading to enhanced outcomes. Our experimental results and subsequent analysis substantiate that FedPKR effectively augments model accuracy in image classification tasks, meanwhile demonstrating resilience to statistical heterogeneity across all participating entities.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"902-912"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10461059/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is a distributed learning paradigm, which is usually combined with edge computing to meet the joint training of IoT devices. A significant challenge in federated learning lies in the statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) local data across diverse parties. This heterogeneity can result in inconsistent optimization within individual local models. Although previous research has endeavored to tackle issues stemming from heterogeneous data, our findings indicate that these attempts have not yielded high-performance neural network models. To overcome this fundamental challenge, we introduce the framework called FedPKR in this paper, which facilitates efficient federated learning through knowledge review. The core principle of FedPKR involves leveraging the knowledge representation generated by the global and local model layers to conduct periodic layer-by-layer comparative learning in a reciprocal manner. This strategy rectifies local model training, leading to enhanced outcomes. Our experimental results and subsequent analysis substantiate that FedPKR effectively augments model accuracy in image classification tasks, meanwhile demonstrating resilience to statistical heterogeneity across all participating entities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信