Qiao Cheng;Xiangbo Gong;Bin Hu;Hongyu Zhu;Zhiyu Cao
{"title":"Seismic Data Sparse Representation Using Swin Transformers","authors":"Qiao Cheng;Xiangbo Gong;Bin Hu;Hongyu Zhu;Zhiyu Cao","doi":"10.1109/LGRS.2024.3510685","DOIUrl":null,"url":null,"abstract":"Seismic data preprocessing significantly benefits from advanced sparse representation and domain transformation techniques to enhance denoising, wavefield separation, and data reconstruction. This study introduces a novel approach utilizing a deep learning framework for discrete sparse representation of seismic data. Our method utilizes a Swin Transformer-based encoding-decoding framework, which combines the hierarchical structures of CNNs with the self-attention mechanism of Transformers, to model both local and global information efficiently. This integration enables the precise characterization of seismic reflection events and the reconstruction of seismic records from a constructed sparse feature space. The proposed model has been rigorously tested on both simulated and field datasets, demonstrating its robustness, and potential provides superior decomposition of seismic data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777475/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic data preprocessing significantly benefits from advanced sparse representation and domain transformation techniques to enhance denoising, wavefield separation, and data reconstruction. This study introduces a novel approach utilizing a deep learning framework for discrete sparse representation of seismic data. Our method utilizes a Swin Transformer-based encoding-decoding framework, which combines the hierarchical structures of CNNs with the self-attention mechanism of Transformers, to model both local and global information efficiently. This integration enables the precise characterization of seismic reflection events and the reconstruction of seismic records from a constructed sparse feature space. The proposed model has been rigorously tested on both simulated and field datasets, demonstrating its robustness, and potential provides superior decomposition of seismic data.