Resilient Space Operations With Digital Twin for Solar PV and Storage

IF 3.3 Q3 ENERGY & FUELS
Shayan Ebrahimi;Mohammad Seyedi;S. M. Safayet Ullah;Farzad Ferdowsi
{"title":"Resilient Space Operations With Digital Twin for Solar PV and Storage","authors":"Shayan Ebrahimi;Mohammad Seyedi;S. M. Safayet Ullah;Farzad Ferdowsi","doi":"10.1109/OAJPE.2024.3508576","DOIUrl":null,"url":null,"abstract":"Space missions would not be possible without an available, reliable, autonomous, and resilient power system. Space-based power systems differ from Earth’s grid in generation sources, needs, structure, and controllability. This research introduces a groundbreaking approach employing digital twin (DT) technology to emulate and enhance the performance of a physical system representing a space-based system. The system encompasses three DC converters, a DC source, and a modular battery storage unit feeding a variable load. Rigorous testing across diverse operating points establishes the real-time high-fidelity DT, with root mean square error (RMSE) values consistently below 5%. The principal innovation leverages this DT to fortify system resilience against unforeseen events, surpassing the capabilities of existing controllers and autonomy levels. The approach offers an invaluable tool for scenarios where the system may not be primed for or physical access to components is limited. This research introduces a modular battery storage solution that seamlessly compensates for power shortages due to dust effects on the Lunar surface or unexpected system faults. This holistic approach validates the DT’s fidelity and underscores its potential to revolutionize system operation, safeguard against uncertainties, and expedite response strategies during unexpected contingencies. The proposed approach also paves the way for future development.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"11 ","pages":"624-636"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770281/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Space missions would not be possible without an available, reliable, autonomous, and resilient power system. Space-based power systems differ from Earth’s grid in generation sources, needs, structure, and controllability. This research introduces a groundbreaking approach employing digital twin (DT) technology to emulate and enhance the performance of a physical system representing a space-based system. The system encompasses three DC converters, a DC source, and a modular battery storage unit feeding a variable load. Rigorous testing across diverse operating points establishes the real-time high-fidelity DT, with root mean square error (RMSE) values consistently below 5%. The principal innovation leverages this DT to fortify system resilience against unforeseen events, surpassing the capabilities of existing controllers and autonomy levels. The approach offers an invaluable tool for scenarios where the system may not be primed for or physical access to components is limited. This research introduces a modular battery storage solution that seamlessly compensates for power shortages due to dust effects on the Lunar surface or unexpected system faults. This holistic approach validates the DT’s fidelity and underscores its potential to revolutionize system operation, safeguard against uncertainties, and expedite response strategies during unexpected contingencies. The proposed approach also paves the way for future development.
弹性空间操作与数字孪生太阳能光伏和存储
没有一个可用的、可靠的、自主的和有弹性的电力系统,太空任务是不可能完成的。天基电力系统在发电来源、需求、结构和可控性方面与地球电网不同。本研究介绍了一种开创性的方法,采用数字孪生(DT)技术来模拟和增强代表天基系统的物理系统的性能。该系统包括三个直流变换器,一个直流电源和一个模块电池存储单元,供可变负载使用。通过不同工作点的严格测试,建立了实时高保真的DT,均方根误差(RMSE)值始终低于5%。主要的创新是利用这种DT来加强系统对不可预见事件的弹性,超越了现有控制器和自治级别的能力。该方法为系统可能没有准备好或对组件的物理访问受到限制的场景提供了宝贵的工具。这项研究介绍了一种模块化电池存储解决方案,可以无缝地补偿由于月球表面灰尘影响或意外系统故障而导致的电力短缺。这种整体方法验证了DT的保真度,并强调了其革命性的系统操作潜力,防止不确定性,并在意外情况下加快响应策略。提出的方法也为未来的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信