{"title":"MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting","authors":"Dezheng Wang;Rongjie Liu;Congyan Chen;Shihua Li","doi":"10.1109/TKDE.2024.3490843","DOIUrl":null,"url":null,"abstract":"Short-term time series forecasting is pivotal in various scientific and industrial fields. Recent advancements in deep learning-based technologies have significantly improved the efficiency and accuracy of short-term time series modeling. Despite advancements, current time short-term series forecasting methods typically emphasize modeling dependencies across time stamps but frequently overlook inter-variable dependencies, which is crucial for multivariate forecasting. We propose a multi patterns memory model discovering various dependency patterns for short-term multivariate time series forecasting to fill the gap. The proposed model is structured around two key components: the short-term memory block and the long-term memory block. These networks are distinctively characterized by their use of asymmetric convolution, each tailored to process the various spatial-temporal dependencies among data. Experimental results show that the proposed model demonstrates competitive performance over the other time series forecasting methods across five benchmark datasets, likely thanks to the asymmetric structure, which can effectively extract the underlying various spatial-temporal dependencies among data.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"438-448"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742485/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term time series forecasting is pivotal in various scientific and industrial fields. Recent advancements in deep learning-based technologies have significantly improved the efficiency and accuracy of short-term time series modeling. Despite advancements, current time short-term series forecasting methods typically emphasize modeling dependencies across time stamps but frequently overlook inter-variable dependencies, which is crucial for multivariate forecasting. We propose a multi patterns memory model discovering various dependency patterns for short-term multivariate time series forecasting to fill the gap. The proposed model is structured around two key components: the short-term memory block and the long-term memory block. These networks are distinctively characterized by their use of asymmetric convolution, each tailored to process the various spatial-temporal dependencies among data. Experimental results show that the proposed model demonstrates competitive performance over the other time series forecasting methods across five benchmark datasets, likely thanks to the asymmetric structure, which can effectively extract the underlying various spatial-temporal dependencies among data.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.