{"title":"In Search of a Memory-Efficient Framework for Online Cardinality Estimation","authors":"Xun Song;Jiaqi Zheng;Hao Qian;Shiju Zhao;Hongxuan Zhang;Xuntao Pan;Guihai Chen","doi":"10.1109/TKDE.2024.3486571","DOIUrl":null,"url":null,"abstract":"Estimating per-flow cardinality from high-speed data streams has many applications such as anomaly detection and resource allocation. Yet despite tracking single flow cardinality with approximation algorithms offered, there remain algorithmical challenges for monitoring multi-flows especially under unbalanced cardinality distribution: existing methods adopt a uniform sketch layout and incur a large memory footprint to achieve high accuracy. Furthermore, they are hard to implement in the compact hardware used for line-rate processing. In this paper, we propose Couper, a memory-efficient measurement framework that can estimate cardinality for multi-flows under unbalanced cardinality distribution. We propose a two-layer structure based on a classic coupon collector's principle, where numerous mice flows are confined to the first layer and only the potential elephant flows are allowed to enter the second layer. Our two-layer structure can better fit the unbalanced cardinality distribution in practice and achieve much higher memory efficiency. We implement Couper in both software and hardware. Extensive evaluation under real-world and synthetic data traces show more than 20× improvements in terms of memory-efficiency compared to state-of-the-art.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"392-407"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750119/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating per-flow cardinality from high-speed data streams has many applications such as anomaly detection and resource allocation. Yet despite tracking single flow cardinality with approximation algorithms offered, there remain algorithmical challenges for monitoring multi-flows especially under unbalanced cardinality distribution: existing methods adopt a uniform sketch layout and incur a large memory footprint to achieve high accuracy. Furthermore, they are hard to implement in the compact hardware used for line-rate processing. In this paper, we propose Couper, a memory-efficient measurement framework that can estimate cardinality for multi-flows under unbalanced cardinality distribution. We propose a two-layer structure based on a classic coupon collector's principle, where numerous mice flows are confined to the first layer and only the potential elephant flows are allowed to enter the second layer. Our two-layer structure can better fit the unbalanced cardinality distribution in practice and achieve much higher memory efficiency. We implement Couper in both software and hardware. Extensive evaluation under real-world and synthetic data traces show more than 20× improvements in terms of memory-efficiency compared to state-of-the-art.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.