TGformer: A Graph Transformer Framework for Knowledge Graph Embedding

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fobo Shi;Duantengchuan Li;Xiaoguang Wang;Bing Li;Xindong Wu
{"title":"TGformer: A Graph Transformer Framework for Knowledge Graph Embedding","authors":"Fobo Shi;Duantengchuan Li;Xiaoguang Wang;Bing Li;Xindong Wu","doi":"10.1109/TKDE.2024.3486747","DOIUrl":null,"url":null,"abstract":"Knowledge graph embedding is efficient method for reasoning over known facts and inferring missing links. Existing methods are mainly triplet-based or graph-based. Triplet-based approaches learn the embedding of missing entities by a single triple only. They ignore the fact that the knowledge graph is essentially a graph structure. Graph-based methods consider graph structure information but ignore the contextual information of nodes in the knowledge graph, making them unable to discern valuable entity (relation) information. In response to the above limitations, we propose a general graph transformer framework for knowledge graph embedding (TGformer). It is the first to use a graph transformer to build knowledge embeddings with triplet-level and graph-level structural features in the static and temporal knowledge graph. Specifically, a context-level subgraph is constructed for each predicted triplet, which models the relation between triplets with the same entity. Afterward, we design a knowledge graph transformer network (KGTN) to fully explore multi-structural features in knowledge graphs, including triplet-level and graph-level, boosting the model to understand entities (relations) in different contexts. Finally, semantic matching is adopted to select the entity with the highest score. Experimental results on several public knowledge graph datasets show that our method can achieve state-of-the-art performance in link prediction.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"526-541"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742302/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graph embedding is efficient method for reasoning over known facts and inferring missing links. Existing methods are mainly triplet-based or graph-based. Triplet-based approaches learn the embedding of missing entities by a single triple only. They ignore the fact that the knowledge graph is essentially a graph structure. Graph-based methods consider graph structure information but ignore the contextual information of nodes in the knowledge graph, making them unable to discern valuable entity (relation) information. In response to the above limitations, we propose a general graph transformer framework for knowledge graph embedding (TGformer). It is the first to use a graph transformer to build knowledge embeddings with triplet-level and graph-level structural features in the static and temporal knowledge graph. Specifically, a context-level subgraph is constructed for each predicted triplet, which models the relation between triplets with the same entity. Afterward, we design a knowledge graph transformer network (KGTN) to fully explore multi-structural features in knowledge graphs, including triplet-level and graph-level, boosting the model to understand entities (relations) in different contexts. Finally, semantic matching is adopted to select the entity with the highest score. Experimental results on several public knowledge graph datasets show that our method can achieve state-of-the-art performance in link prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信