Multiple Fano Resonance with Excellent Sensing in Rake-Shaped Graphene Nanostructure

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Guijun Li
{"title":"Multiple Fano Resonance with Excellent Sensing in Rake-Shaped Graphene Nanostructure","authors":"Guijun Li","doi":"10.1002/adts.202400707","DOIUrl":null,"url":null,"abstract":"This study introduces a rake-shaped graphene nanostructure and investigates multiple Fano resonances and its sensing application by using finite-difference time-domain (FDTD) simulations method. Here, the dependence of structural parameters, Fermi levels, and the incidence angle and polarization of the input wave on optical transmission spectra is aimed at investigating. The results show that tunable multiple Fano resonances can be achieved in the rake-shaped graphene nanostructure. In addition, the sensing characteristics based on the multi-Fano resonance in rake-shaped graphene nanostructure are also studied in the work. The research results show that the sensing sensitivity and figure of merit (FOM) can reach up to 2.1 THz/RIU and 3.3/RIU as a result of enhanced interaction between environmental substances and optical waves. These findings deepen the understanding of plasmonic resonances in graphene-based metasurfaces and emphasize their significant potential in sensing applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400707","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a rake-shaped graphene nanostructure and investigates multiple Fano resonances and its sensing application by using finite-difference time-domain (FDTD) simulations method. Here, the dependence of structural parameters, Fermi levels, and the incidence angle and polarization of the input wave on optical transmission spectra is aimed at investigating. The results show that tunable multiple Fano resonances can be achieved in the rake-shaped graphene nanostructure. In addition, the sensing characteristics based on the multi-Fano resonance in rake-shaped graphene nanostructure are also studied in the work. The research results show that the sensing sensitivity and figure of merit (FOM) can reach up to 2.1 THz/RIU and 3.3/RIU as a result of enhanced interaction between environmental substances and optical waves. These findings deepen the understanding of plasmonic resonances in graphene-based metasurfaces and emphasize their significant potential in sensing applications.

Abstract Image

耙形石墨烯纳米结构中具有优异传感性能的多范诺共振
本研究引入了一种耙形石墨烯纳米结构,并利用时域有限差分(FDTD)模拟方法研究了多Fano共振及其传感应用。本文旨在研究结构参数、费米能级、入射波的入射角和偏振对透射光谱的依赖关系。结果表明,在耙形石墨烯纳米结构中可以实现可调谐的多范诺共振。此外,本文还研究了基于多范诺共振的耙子状石墨烯纳米结构的传感特性。研究结果表明,由于环境物质与光波之间的相互作用增强,传感灵敏度和质量因数(FOM)可达到2.1 THz/RIU和3.3 THz/RIU。这些发现加深了对石墨烯基超表面等离子共振的理解,并强调了它们在传感应用中的重要潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信