{"title":"Multiple Fano Resonance with Excellent Sensing in Rake-Shaped Graphene Nanostructure","authors":"Guijun Li","doi":"10.1002/adts.202400707","DOIUrl":null,"url":null,"abstract":"This study introduces a rake-shaped graphene nanostructure and investigates multiple Fano resonances and its sensing application by using finite-difference time-domain (FDTD) simulations method. Here, the dependence of structural parameters, Fermi levels, and the incidence angle and polarization of the input wave on optical transmission spectra is aimed at investigating. The results show that tunable multiple Fano resonances can be achieved in the rake-shaped graphene nanostructure. In addition, the sensing characteristics based on the multi-Fano resonance in rake-shaped graphene nanostructure are also studied in the work. The research results show that the sensing sensitivity and figure of merit (FOM) can reach up to 2.1 THz/RIU and 3.3/RIU as a result of enhanced interaction between environmental substances and optical waves. These findings deepen the understanding of plasmonic resonances in graphene-based metasurfaces and emphasize their significant potential in sensing applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400707","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a rake-shaped graphene nanostructure and investigates multiple Fano resonances and its sensing application by using finite-difference time-domain (FDTD) simulations method. Here, the dependence of structural parameters, Fermi levels, and the incidence angle and polarization of the input wave on optical transmission spectra is aimed at investigating. The results show that tunable multiple Fano resonances can be achieved in the rake-shaped graphene nanostructure. In addition, the sensing characteristics based on the multi-Fano resonance in rake-shaped graphene nanostructure are also studied in the work. The research results show that the sensing sensitivity and figure of merit (FOM) can reach up to 2.1 THz/RIU and 3.3/RIU as a result of enhanced interaction between environmental substances and optical waves. These findings deepen the understanding of plasmonic resonances in graphene-based metasurfaces and emphasize their significant potential in sensing applications.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics