Initiators for Continuous Activator Regeneration (ICAR) Depolymerization

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Glen R. Jones, Maria-Nefeli Antonopoulou, Nghia P. Truong, Athina Anastasaki
{"title":"Initiators for Continuous Activator Regeneration (ICAR) Depolymerization","authors":"Glen R. Jones, Maria-Nefeli Antonopoulou, Nghia P. Truong, Athina Anastasaki","doi":"10.1021/jacs.4c13785","DOIUrl":null,"url":null,"abstract":"Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration. To overcome this, the concept of initiators for continuous activator regeneration (ICAR) depolymerization is introduced herein as a broadly applicable approach to significantly reduce reaction temperatures for ATRP depolymerizations. Addition of commercially available free radical initiators enables the on-demand increase of depolymerization efficiency from <1% to 96%, achieving monomer generation at 120 °C, with conversions on par with thermal reversible addition–fragmentation chain transfer (RAFT) depolymerizations. Incubation studies confirm the elimination of deleterious side reactions at the milder temperatures employed, while the methodology can be scaled up to 1 g. The robustness and versatility of ICAR depolymerization is further demonstrated by the possibility to effectively depolymerize both chlorine and bromine terminated polymers and its compatibility with both copper and iron catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"117 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13785","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration. To overcome this, the concept of initiators for continuous activator regeneration (ICAR) depolymerization is introduced herein as a broadly applicable approach to significantly reduce reaction temperatures for ATRP depolymerizations. Addition of commercially available free radical initiators enables the on-demand increase of depolymerization efficiency from <1% to 96%, achieving monomer generation at 120 °C, with conversions on par with thermal reversible addition–fragmentation chain transfer (RAFT) depolymerizations. Incubation studies confirm the elimination of deleterious side reactions at the milder temperatures employed, while the methodology can be scaled up to 1 g. The robustness and versatility of ICAR depolymerization is further demonstrated by the possibility to effectively depolymerize both chlorine and bromine terminated polymers and its compatibility with both copper and iron catalysts.

Abstract Image

连续活化剂再生(ICAR)解聚的引发剂
通过原子转移自由基聚合(ATRP)合成的聚合物的化学回收通常需要高温(即170°C)才能有效操作,不仅消耗不必要的能量,而且由于不可避免的端基变质而影响解聚收率。为了克服这个问题,本文引入了连续活化剂再生(ICAR)解聚引发剂的概念,作为一种广泛适用的方法,可以显著降低ATRP解聚的反应温度。加入市售的自由基引发剂可以将解聚效率从1%提高到96%,在120°C下实现单体生成,转化率与热可逆加成-裂解链转移(RAFT)解聚合相当。孵育研究证实,在较温和的温度下消除了有害的副反应,而该方法可以扩大到1g。ICAR解聚的鲁棒性和通用性进一步证明了它可以有效解聚氯端和溴端聚合物以及它与铜和铁催化剂的相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信