Guowang Zhang;Xuliang Yao;Luca Peretti;Shengqi Huang;Xiaonan Gao;Chenwei Ma;Jingfang Wang;Zhaokai Li
{"title":"Computational Efficient DSVM-Based Model Predictive Direct Speed Control for SPMSM Drives With Mechanical Disturbance Suppression","authors":"Guowang Zhang;Xuliang Yao;Luca Peretti;Shengqi Huang;Xiaonan Gao;Chenwei Ma;Jingfang Wang;Zhaokai Li","doi":"10.1109/JESTPE.2024.3515170","DOIUrl":null,"url":null,"abstract":"This article proposes a simplified discrete space vector modulation (DSVM)-based model predictive direct speed control (MPDSC) with an improved load disturbance observer for permanent magnet synchronous motor (PMSM) drives. First, a simplified DSVM method is used to improve the steady-state performance of MPDSC. In this DSVM method, a novel geometric method relying only on three auxiliary lines in each sector is designed to simplify the algorithm’s complexity. In this way, the set of candidate vectors is quickly determined. Then, the current pulsation and speed of MPDSC are suppressed, and the computational burden of the DSVM execution process is reduced. Second, the reasons that affect the dynamic performance of the conventional linear extended state observer (ESO)-based mechanical disturbance observer are analyzed, and the observed error of the observer is derived. Based on the observer error, an improved mechanical disturbance observer is proposed to accelerate the convergence process. The Lyapunov theory proves the stability of the proposed observer. Finally, the feasibility of the proposed method is verified by experiments.","PeriodicalId":13093,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Power Electronics","volume":"13 2","pages":"1673-1686"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10793093/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a simplified discrete space vector modulation (DSVM)-based model predictive direct speed control (MPDSC) with an improved load disturbance observer for permanent magnet synchronous motor (PMSM) drives. First, a simplified DSVM method is used to improve the steady-state performance of MPDSC. In this DSVM method, a novel geometric method relying only on three auxiliary lines in each sector is designed to simplify the algorithm’s complexity. In this way, the set of candidate vectors is quickly determined. Then, the current pulsation and speed of MPDSC are suppressed, and the computational burden of the DSVM execution process is reduced. Second, the reasons that affect the dynamic performance of the conventional linear extended state observer (ESO)-based mechanical disturbance observer are analyzed, and the observed error of the observer is derived. Based on the observer error, an improved mechanical disturbance observer is proposed to accelerate the convergence process. The Lyapunov theory proves the stability of the proposed observer. Finally, the feasibility of the proposed method is verified by experiments.
期刊介绍:
The aim of the journal is to enable the power electronics community to address the emerging and selected topics in power electronics in an agile fashion. It is a forum where multidisciplinary and discriminating technologies and applications are discussed by and for both practitioners and researchers on timely topics in power electronics from components to systems.