{"title":"Structured Generative Models for Scene Understanding","authors":"Christopher K. I. Williams","doi":"10.1007/s11263-024-02316-z","DOIUrl":null,"url":null,"abstract":"<p>This position paper argues for the use of <i>structured generative models</i> (SGMs) for the understanding of static scenes. This requires the reconstruction of a 3D scene from an input image (or a set of multi-view images), whereby the contents of the image(s) are causally explained in terms of models of instantiated objects, each with their own type, shape, appearance and pose, along with global variables like scene lighting and camera parameters. This approach also requires scene models which account for the co-occurrences and inter-relationships of objects in a scene. The SGM approach has the merits that it is compositional and generative, which lead to interpretability and editability. To pursue the SGM agenda, we need models for objects and scenes, and approaches to carry out inference. We first review models for objects, which include “things” (object categories that have a well defined shape), and “stuff” (categories which have amorphous spatial extent). We then move on to review <i>scene models</i> which describe the inter-relationships of objects. Perhaps the most challenging problem for SGMs is <i>inference</i> of the objects, lighting and camera parameters, and scene inter-relationships from input consisting of a single or multiple images. We conclude with a discussion of issues that need addressing to advance the SGM agenda.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"200 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02316-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This position paper argues for the use of structured generative models (SGMs) for the understanding of static scenes. This requires the reconstruction of a 3D scene from an input image (or a set of multi-view images), whereby the contents of the image(s) are causally explained in terms of models of instantiated objects, each with their own type, shape, appearance and pose, along with global variables like scene lighting and camera parameters. This approach also requires scene models which account for the co-occurrences and inter-relationships of objects in a scene. The SGM approach has the merits that it is compositional and generative, which lead to interpretability and editability. To pursue the SGM agenda, we need models for objects and scenes, and approaches to carry out inference. We first review models for objects, which include “things” (object categories that have a well defined shape), and “stuff” (categories which have amorphous spatial extent). We then move on to review scene models which describe the inter-relationships of objects. Perhaps the most challenging problem for SGMs is inference of the objects, lighting and camera parameters, and scene inter-relationships from input consisting of a single or multiple images. We conclude with a discussion of issues that need addressing to advance the SGM agenda.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.