Reply to: Deeper evaluation of a single-cell foundation model

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fan Yang, Fang Wang, Longkai Huang, Linjing Liu, Junzhou Huang, Jianhua Yao
{"title":"Reply to: Deeper evaluation of a single-cell foundation model","authors":"Fan Yang, Fang Wang, Longkai Huang, Linjing Liu, Junzhou Huang, Jianhua Yao","doi":"10.1038/s42256-024-00948-x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 12","pages":"1447-1450"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00948-x","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract Image

Abstract Image

回复:单细胞基础模型的更深层次评价
回复者:R. Boiarsky等。自然机器智能https://doi.org/10.1038/s42256-024-00949-w(2024)其次,scBERT还可以通过将未见的查询单元标记为“未知”来用于新的类发现任务,而L1逻辑回归方法容易出现错误分配,因为它必须强制预测已知的单元类型。虽然同样的方法可以应用于逻辑回归模型的softmax输出,但在浅层模型(如逻辑回归)中由softmax导出的置信水平可能是不可靠的。这种不可靠性在新的、分布外的数据中尤为明显,这些数据往往落在这些模型错误地显示出高可信度的区域。相比之下,深度模型,如scBERT模型,在处理训练集以外的数据时表现出更高的不确定性,从而为新数据提供更可靠的预测。我们在Boiarsky等人的扩展图1和原始scBERT论文的图4中进行的实验结果证实了这一断言,其中逻辑回归(LR)模型对新细胞类型的预测几乎为零精度,而scBERT在相同任务中达到了很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信