Scalaron dark matter and the thermal history of the universe

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Yuri Shtanov
{"title":"Scalaron dark matter and the thermal history of the universe","authors":"Yuri Shtanov","doi":"10.1088/1475-7516/2024/12/028","DOIUrl":null,"url":null,"abstract":"In metric f(R) gravity minimally coupled to the Standard Model, the scalaron field can act as a dark-matter candidate if its mass lies in the range meV ≲ m ≲ MeV. The evolution of the scalaron is influenced by the trace of the stress-energy tensor, whose behaviour, as shown in our previous work, becomes non-adiabatic during the electroweak crossover, potentially triggering scalaron oscillations. While we previously approximated this crossover as a second-order phase transition at the one-loop level, the transition is actually smoother. In this paper, we refine our analysis to account for this smooth crossover and show that scalaron oscillations are still excited in a qualitatively similar manner, driven by the rapid dynamics of the electroweak crossover observed in numerical lattice simulations, provided the scalaron mass is sufficiently small. We also investigate the time-dependent contribution to the stress-energy trace due to the trace anomaly of quantum chromodynamics. Our results indicate that, while the trace anomaly shifts the scalaron's equilibrium value, this shift evolves adiabatically compared to the fast oscillations of the scalaron, meaning that the trace anomaly does not significantly affect the potential cosmological scenarios for scalaron evolution.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"15 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/028","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In metric f(R) gravity minimally coupled to the Standard Model, the scalaron field can act as a dark-matter candidate if its mass lies in the range meV ≲ m ≲ MeV. The evolution of the scalaron is influenced by the trace of the stress-energy tensor, whose behaviour, as shown in our previous work, becomes non-adiabatic during the electroweak crossover, potentially triggering scalaron oscillations. While we previously approximated this crossover as a second-order phase transition at the one-loop level, the transition is actually smoother. In this paper, we refine our analysis to account for this smooth crossover and show that scalaron oscillations are still excited in a qualitatively similar manner, driven by the rapid dynamics of the electroweak crossover observed in numerical lattice simulations, provided the scalaron mass is sufficiently small. We also investigate the time-dependent contribution to the stress-energy trace due to the trace anomaly of quantum chromodynamics. Our results indicate that, while the trace anomaly shifts the scalaron's equilibrium value, this shift evolves adiabatically compared to the fast oscillations of the scalaron, meaning that the trace anomaly does not significantly affect the potential cosmological scenarios for scalaron evolution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信