Hypoxia-Induced Senescent Fibroblasts Secrete IGF1 to Promote Cancer Stemness in Esophageal Squamous Cell Carcinoma

IF 12.5 1区 医学 Q1 ONCOLOGY
Zhengjie Ou, Liang Zhu, Xinjie Chen, Tianyuan Liu, Guoyu Cheng, Rucheng Liu, Shaosen Zhang, Wen Tan, Dongxin Lin, Chen Wu
{"title":"Hypoxia-Induced Senescent Fibroblasts Secrete IGF1 to Promote Cancer Stemness in Esophageal Squamous Cell Carcinoma","authors":"Zhengjie Ou, Liang Zhu, Xinjie Chen, Tianyuan Liu, Guoyu Cheng, Rucheng Liu, Shaosen Zhang, Wen Tan, Dongxin Lin, Chen Wu","doi":"10.1158/0008-5472.can-24-1185","DOIUrl":null,"url":null,"abstract":"Cancer-associated fibroblasts (CAFs) contribute to cancer initiation and progression and play a pivotal role in therapeutic response and patient prognosis. CAFs exhibit functional and phenotypic heterogeneity, highlighting the need to clarify the specific subtypes of CAFs to facilitate the development of targeted therapies against pro-tumorigenic CAFs. Here, using single-cell RNA sequencing on patient samples of esophageal squamous cell carcinoma (ESCC), we identified a CAF subcluster associated with tumor stemness that was enriched in genes associated with hypoxia and senescence. The CAF subpopulation, termed as hypoxia-induced senescent fibroblasts (hsCAFs), displayed high secretion of insulin-like growth factor 1 (IGF1). The hsCAFs inhibited AMP-activated protein kinase (AMPK) activity in cancer cells via IGF1 to promote tumor stemness. The formation of hsCAFs was induced by the synergetic effect of hypoxia and cancer cells. Activation of nuclear factor erythroid 2-related factor 2 (NRF2) in cancer cells under hypoxia drove interleukin-1 alpha (IL-1α) production to trigger CAF senescence and IGF1 secretion via nuclear factor I A (NFIA). Knockout of IGF1 in CAFs or NRF2 in ESCC cells suppressed the tumor growth and chemotherapy resistance induced by CAFs in vivo. Importantly, patients with high proportions of hsCAFs showed poor survival and a worse response to chemotherapy. In summary, these findings identify a hsCAF subpopulation generated by interplay between cancer cells and CAFs under hypoxic conditions that promotes ESCC stemness and reveal targeting hsCAFs as an effective therapeutic strategy against chemotherapy-resistant ESCC.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"14 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1185","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer-associated fibroblasts (CAFs) contribute to cancer initiation and progression and play a pivotal role in therapeutic response and patient prognosis. CAFs exhibit functional and phenotypic heterogeneity, highlighting the need to clarify the specific subtypes of CAFs to facilitate the development of targeted therapies against pro-tumorigenic CAFs. Here, using single-cell RNA sequencing on patient samples of esophageal squamous cell carcinoma (ESCC), we identified a CAF subcluster associated with tumor stemness that was enriched in genes associated with hypoxia and senescence. The CAF subpopulation, termed as hypoxia-induced senescent fibroblasts (hsCAFs), displayed high secretion of insulin-like growth factor 1 (IGF1). The hsCAFs inhibited AMP-activated protein kinase (AMPK) activity in cancer cells via IGF1 to promote tumor stemness. The formation of hsCAFs was induced by the synergetic effect of hypoxia and cancer cells. Activation of nuclear factor erythroid 2-related factor 2 (NRF2) in cancer cells under hypoxia drove interleukin-1 alpha (IL-1α) production to trigger CAF senescence and IGF1 secretion via nuclear factor I A (NFIA). Knockout of IGF1 in CAFs or NRF2 in ESCC cells suppressed the tumor growth and chemotherapy resistance induced by CAFs in vivo. Importantly, patients with high proportions of hsCAFs showed poor survival and a worse response to chemotherapy. In summary, these findings identify a hsCAF subpopulation generated by interplay between cancer cells and CAFs under hypoxic conditions that promotes ESCC stemness and reveal targeting hsCAFs as an effective therapeutic strategy against chemotherapy-resistant ESCC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信