Zhen Yang, Xinpeng Liu, Jun Zhu, Yangyang Chai, Boyi Cong, Bo Li, Wanfeng Gao, Ye Hu, Mingyue Wen, Yanfang Liu, Li Fu, Xuetao Cao
{"title":"Inhibiting intracellular CD28 in cancer cells enhances antitumor immunity and overcomes anti-PD-1 resistance via targeting PD-L1","authors":"Zhen Yang, Xinpeng Liu, Jun Zhu, Yangyang Chai, Boyi Cong, Bo Li, Wanfeng Gao, Ye Hu, Mingyue Wen, Yanfang Liu, Li Fu, Xuetao Cao","doi":"10.1016/j.ccell.2024.11.008","DOIUrl":null,"url":null,"abstract":"Deciphering mechanisms for cancer immune escape may provide targets for improving immunotherapy efficacy. By <em>in vivo</em> genome-wide CRISPR loss-of-function screening in a mouse model of triple negative breast cancer (TNBC), we uncovered a non-classical function of <em>Cd28</em> in cancer cells to promote immune escape. Knocking out <em>Cd28</em> in cancer cells increased infiltration of type I conventional DC (cDC1) and activated tumor-specific CD8<sup>+</sup> T cells, and pharmaceutical inducible knockdown of <em>Cd28</em> inhibited pre-established tumor growth and overcame anti-PD-1 resistance <em>in vivo</em>. Furthermore, high expression of cancer cell CD28 in human TNBC tissues correlated with elevated PD-L1 expression, less CD8<sup>+</sup> T cell infiltration, and poor prognosis. Mechanistically, intracellular CD28 directly bound to <em>Cd274</em> mRNA and recruited spliceosomal factor SNRPB2 to stabilize <em>Cd274</em> mRNA in nucleus, promoting PD-L1 expression and immune escape. Therefore, disrupting cancer cell CD28-mediated immune escape may provide a potential approach to improve breast cancer immunotherapy.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"22 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.11.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deciphering mechanisms for cancer immune escape may provide targets for improving immunotherapy efficacy. By in vivo genome-wide CRISPR loss-of-function screening in a mouse model of triple negative breast cancer (TNBC), we uncovered a non-classical function of Cd28 in cancer cells to promote immune escape. Knocking out Cd28 in cancer cells increased infiltration of type I conventional DC (cDC1) and activated tumor-specific CD8+ T cells, and pharmaceutical inducible knockdown of Cd28 inhibited pre-established tumor growth and overcame anti-PD-1 resistance in vivo. Furthermore, high expression of cancer cell CD28 in human TNBC tissues correlated with elevated PD-L1 expression, less CD8+ T cell infiltration, and poor prognosis. Mechanistically, intracellular CD28 directly bound to Cd274 mRNA and recruited spliceosomal factor SNRPB2 to stabilize Cd274 mRNA in nucleus, promoting PD-L1 expression and immune escape. Therefore, disrupting cancer cell CD28-mediated immune escape may provide a potential approach to improve breast cancer immunotherapy.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.