Heehwa G. Son, Dat Thinh Ha, Yun Xia, Tiancheng Li, Jasmine Blandin, Tomonori Oka, Marjan Azin, Danielle N. Conrad, Can Zhou, Yuhan Zeng, Tatsuya Hasegawa, John D. Strickley, Jonathan L. Messerschmidt, Ranya Guennoun, Tal H. Erlich, Gregory L. Shoemaker, Luke H. Johnson, Kenneth E. Palmer, David E. Fisher, Thomas D. Horn, Shadmehr Demehri
{"title":"Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin","authors":"Heehwa G. Son, Dat Thinh Ha, Yun Xia, Tiancheng Li, Jasmine Blandin, Tomonori Oka, Marjan Azin, Danielle N. Conrad, Can Zhou, Yuhan Zeng, Tatsuya Hasegawa, John D. Strickley, Jonathan L. Messerschmidt, Ranya Guennoun, Tal H. Erlich, Gregory L. Shoemaker, Luke H. Johnson, Kenneth E. Palmer, David E. Fisher, Thomas D. Horn, Shadmehr Demehri","doi":"10.1016/j.ccell.2024.11.013","DOIUrl":null,"url":null,"abstract":"Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system’s role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8<sup>+</sup> T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8<sup>+</sup> T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8<sup>+</sup> T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"58 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.11.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system’s role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8+ T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8+ T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8+ T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.