{"title":"Black holes, Cauchy horizons, and mass inflation","authors":"Matt Visser","doi":"10.1007/s10714-024-03330-9","DOIUrl":null,"url":null,"abstract":"<div><p>Event horizons and Cauchy horizons are highly idealized mathematical constructions that do not fully capture the key physics of either Hawking radiation or mass inflation. Indeed, because they are teleological, both event horizons and Cauchy horizons are (in a precise technical sense) not physically observable. In contrast, by inspecting the quasi-local behaviour of null geodesics, long-lived apparent horizons (or more generally long-lived quasi-local horizons) are in principle physically observable, and are “good enough\" for then pragmatically redefining a black hole, and “good enough” for generating Hawking radiation. Furthermore it is now also clear that long lived apparent horizons (quasi-local horizons) are also “good enough\" for generating mass inflation. These observations suggest that one should be somewhat careful when trying to extrapolate rigorous mathematical theorems, which often embody mathematical idealizations that do not necessarily correspond to what a finite resource astronomer can actually measure, into the astrophysical realm.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03330-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Event horizons and Cauchy horizons are highly idealized mathematical constructions that do not fully capture the key physics of either Hawking radiation or mass inflation. Indeed, because they are teleological, both event horizons and Cauchy horizons are (in a precise technical sense) not physically observable. In contrast, by inspecting the quasi-local behaviour of null geodesics, long-lived apparent horizons (or more generally long-lived quasi-local horizons) are in principle physically observable, and are “good enough" for then pragmatically redefining a black hole, and “good enough” for generating Hawking radiation. Furthermore it is now also clear that long lived apparent horizons (quasi-local horizons) are also “good enough" for generating mass inflation. These observations suggest that one should be somewhat careful when trying to extrapolate rigorous mathematical theorems, which often embody mathematical idealizations that do not necessarily correspond to what a finite resource astronomer can actually measure, into the astrophysical realm.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.