A Unified Framework for Event-Based Frame Interpolation With Ad-Hoc Deblurring in the Wild

Lei Sun;Daniel Gehrig;Christos Sakaridis;Mathias Gehrig;Jingyun Liang;Peng Sun;Zhijie Xu;Kaiwei Wang;Luc Van Gool;Davide Scaramuzza
{"title":"A Unified Framework for Event-Based Frame Interpolation With Ad-Hoc Deblurring in the Wild","authors":"Lei Sun;Daniel Gehrig;Christos Sakaridis;Mathias Gehrig;Jingyun Liang;Peng Sun;Zhijie Xu;Kaiwei Wang;Luc Van Gool;Davide Scaramuzza","doi":"10.1109/TPAMI.2024.3510690","DOIUrl":null,"url":null,"abstract":"Effective video frame interpolation hinges on the adept handling of motion in the input scene. Prior work acknowledges asynchronous event information for this, but often overlooks whether motion induces blur in the video, limiting its scope to sharp frame interpolation. We instead propose a unified framework for event-based frame interpolation that performs deblurring ad-hoc and thus works both on sharp and blurry input videos. Our model consists in a bidirectional recurrent network that incorporates the temporal dimension of interpolation and fuses information from the input frames and the events adaptively based on their temporal proximity. To enhance the generalization from synthetic data to real event cameras, we integrate self-supervised framework with the proposed model to enhance the generalization on real-world datasets in the wild. At the dataset level, we introduce a novel real-world high-resolution dataset with events and color videos named HighREV, which provides a challenging evaluation setting for the examined task. Extensive experiments show that our network consistently outperforms previous state-of-the-art methods on frame interpolation, single image deblurring, and the joint task of both. Experiments on domain transfer reveal that self-supervised training effectively mitigates the performance degradation observed when transitioning from synthetic data to real-world data. Code and datasets are available at <uri>https://github.com/AHupuJR/REFID</uri>.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2265-2279"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10794600/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective video frame interpolation hinges on the adept handling of motion in the input scene. Prior work acknowledges asynchronous event information for this, but often overlooks whether motion induces blur in the video, limiting its scope to sharp frame interpolation. We instead propose a unified framework for event-based frame interpolation that performs deblurring ad-hoc and thus works both on sharp and blurry input videos. Our model consists in a bidirectional recurrent network that incorporates the temporal dimension of interpolation and fuses information from the input frames and the events adaptively based on their temporal proximity. To enhance the generalization from synthetic data to real event cameras, we integrate self-supervised framework with the proposed model to enhance the generalization on real-world datasets in the wild. At the dataset level, we introduce a novel real-world high-resolution dataset with events and color videos named HighREV, which provides a challenging evaluation setting for the examined task. Extensive experiments show that our network consistently outperforms previous state-of-the-art methods on frame interpolation, single image deblurring, and the joint task of both. Experiments on domain transfer reveal that self-supervised training effectively mitigates the performance degradation observed when transitioning from synthetic data to real-world data. Code and datasets are available at https://github.com/AHupuJR/REFID.
一种基于事件的帧插值的统一框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信