IMPACT: interpretable microbial phenotype analysis via microbial characteristic traits.

Daniel Mechtersheimer, Wenze Ding, Xiangnan Xu, Sanghyun Kim, Carolyn Sue, Yue Cao, Jean Yang
{"title":"IMPACT: interpretable microbial phenotype analysis via microbial characteristic traits.","authors":"Daniel Mechtersheimer, Wenze Ding, Xiangnan Xu, Sanghyun Kim, Carolyn Sue, Yue Cao, Jean Yang","doi":"10.1093/bioinformatics/btae702","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The human gut microbiome, consisting of trillions of bacteria, significantly impacts health and disease. High-throughput profiling through the advancement of modern technology provides the potential to enhance our understanding of the link between the microbiome and complex disease outcomes. However, there remains an open challenge where current microbiome models lack interpretability of microbial features, limiting a deeper understanding of the role of the gut microbiome in disease. To address this, we present a framework that combines a feature engineering step to transform tabular abundance data to image format using functional microbial annotation databases, with a residual spatial attention transformer block architecture for phenotype classification.</p><p><strong>Results: </strong>Our model, IMPACT, delivers improved predictive accuracy performance across multiclass classification compared to similar methods. More importantly, our approach provides interpretable feature importance through image classification saliency methods. This enables the extraction of taxa markers (features) associated with a disease outcome and also their associated functional microbial traits and metabolites.</p><p><strong>Availability and implementation: </strong>IMPACT is available at https://github.com/SydneyBioX/IMPACT. We providedirect installation of IMPACT via pip.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The human gut microbiome, consisting of trillions of bacteria, significantly impacts health and disease. High-throughput profiling through the advancement of modern technology provides the potential to enhance our understanding of the link between the microbiome and complex disease outcomes. However, there remains an open challenge where current microbiome models lack interpretability of microbial features, limiting a deeper understanding of the role of the gut microbiome in disease. To address this, we present a framework that combines a feature engineering step to transform tabular abundance data to image format using functional microbial annotation databases, with a residual spatial attention transformer block architecture for phenotype classification.

Results: Our model, IMPACT, delivers improved predictive accuracy performance across multiclass classification compared to similar methods. More importantly, our approach provides interpretable feature importance through image classification saliency methods. This enables the extraction of taxa markers (features) associated with a disease outcome and also their associated functional microbial traits and metabolites.

Availability and implementation: IMPACT is available at https://github.com/SydneyBioX/IMPACT. We providedirect installation of IMPACT via pip.

影响:通过微生物特征分析可解释的微生物表型。
动机:人类肠道微生物群由数万亿细菌组成,对健康和疾病有重大影响。通过现代技术的进步,高通量分析提供了增强我们对微生物组与复杂疾病结果之间联系的理解的潜力。然而,目前的微生物组模型缺乏微生物特征的可解释性,这仍然是一个开放的挑战,限制了对肠道微生物组在疾病中的作用的更深层次的理解。为了解决这个问题,我们提出了一个框架,该框架结合了特征工程步骤,使用功能性微生物注释数据库将表格丰度数据转换为图像格式,并结合了用于表型分类的剩余空间注意转换块架构。结果:与类似的方法相比,我们的模型在多类分类中提供了更高的预测精度性能。更重要的是,我们的方法通过图像分类显著性方法提供了可解释的特征重要性。这使得提取与疾病结果相关的分类群标记(特征)及其相关的功能性微生物特征和代谢物成为可能。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信