Radiolytic support for oxidative metabolism in an ancient subsurface brine system.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae138
Devan M Nisson, Thomas L Kieft, Julio Castillo, Scott M Perl, Tullis C Onstott
{"title":"Radiolytic support for oxidative metabolism in an ancient subsurface brine system.","authors":"Devan M Nisson, Thomas L Kieft, Julio Castillo, Scott M Perl, Tullis C Onstott","doi":"10.1093/ismeco/ycae138","DOIUrl":null,"url":null,"abstract":"<p><p>Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs. The relative inaccessibility and low biomass of such systems has led to limited understanding of microbial taxonomic distribution, metabolism, and survival under abiotic stress exposure in these extreme environments. In this study, taxonomic and metabolic annotations of 95 single-cell amplified genomes were obtained for one low biomass (10<sup>3</sup>-10<sup>4</sup> cells/ml), hypersaline (246 g/L), and radiolytically enriched brine obtained from 3.1 km depth in South Africa's Moab Khotsong mine. The majority of single-cell amplified genomes belonged to three halophilic families (<i>Halomondaceae</i> (58%), <i>Microbacteriaceae</i> (24%), and <i>Idiomarinaceae</i> (8%)) and did not overlap with any family-level identifications from service water or a less saline dolomite aquifer sampled in the same mine. Functional annotation revealed complete metabolic modules for aerobic heterotrophy (organic acids and xenobiotic oxidation), fermentation, denitrification, and thiosulfate oxidation, suggesting metabolic support in a microoxic environment. Single-cell amplified genomes also contained complete modules for degradation of complex organics, amino acid and nucleotide synthesis, and motility. This work highlights a long-isolated subsurface fluid system with microbial metabolism fueled by radiolytically generated substrates, including O<sub>2</sub>, and suggests subsurface brines with high radionuclide concentrations as putatively habitable and redox-sustainable environments over long (ka-Ga) timescales.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae138"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-isolated subsurface brine environments (Ma-Ga residence times) may be habitable if they sustainably provide substrates, e.g. through water-rock reactions, that support microbial catabolic energy yields exceeding maintenance costs. The relative inaccessibility and low biomass of such systems has led to limited understanding of microbial taxonomic distribution, metabolism, and survival under abiotic stress exposure in these extreme environments. In this study, taxonomic and metabolic annotations of 95 single-cell amplified genomes were obtained for one low biomass (103-104 cells/ml), hypersaline (246 g/L), and radiolytically enriched brine obtained from 3.1 km depth in South Africa's Moab Khotsong mine. The majority of single-cell amplified genomes belonged to three halophilic families (Halomondaceae (58%), Microbacteriaceae (24%), and Idiomarinaceae (8%)) and did not overlap with any family-level identifications from service water or a less saline dolomite aquifer sampled in the same mine. Functional annotation revealed complete metabolic modules for aerobic heterotrophy (organic acids and xenobiotic oxidation), fermentation, denitrification, and thiosulfate oxidation, suggesting metabolic support in a microoxic environment. Single-cell amplified genomes also contained complete modules for degradation of complex organics, amino acid and nucleotide synthesis, and motility. This work highlights a long-isolated subsurface fluid system with microbial metabolism fueled by radiolytically generated substrates, including O2, and suggests subsurface brines with high radionuclide concentrations as putatively habitable and redox-sustainable environments over long (ka-Ga) timescales.

古代地下盐水系统中氧化代谢的辐射分解支持。
如果长期隔离的地下盐水环境(Ma-Ga停留时间)能够持续提供基质,例如通过水-岩反应,支持微生物分解代谢能的产量超过维持成本,则可能适合居住。这些系统的相对不可接近性和低生物量导致对这些极端环境中微生物分类分布、代谢和非生物应激暴露下的生存的理解有限。在这项研究中,获得了95个单细胞扩增基因组的分类和代谢注释,这些基因组来自南非Moab Khotsong矿区3.1 km深度的低生物量(103-104个细胞/ml)、高盐(246 g/L)和放射性富集盐水。大多数单细胞扩增基因组属于3个嗜盐科(Halomondaceae (58%), microbacteraceae(24%)和Idiomarinaceae(8%)),并且与同一矿山的服务水或低盐白云岩含水层的任何科水平鉴定不重叠。功能注释揭示了有氧异养(有机酸和异种氧化)、发酵、反硝化和硫代硫酸盐氧化的完整代谢模块,表明在微氧环境中支持代谢。单细胞扩增的基因组还包含复杂有机物降解、氨基酸和核苷酸合成以及运动的完整模块。这项工作强调了一个长期隔离的地下流体系统,其微生物代谢由放射性分解产生的底物(包括O2)推动,并表明具有高放射性核素浓度的地下盐水在长(ka-Ga)时间尺度上是假定的可居住和氧化还原可持续的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信