NOISe: Nuclei-Aware Osteoclast Instance Segmentation for Mouse-to-Human Domain Transfer.

Sai Kumar Reddy Manne, Brendan Martin, Tyler Roy, Ryan Neilson, Rebecca Peters, Meghana Chillara, Christine W Lary, Katherine J Motyl, Michael Wan
{"title":"NOISe: Nuclei-Aware Osteoclast Instance Segmentation for Mouse-to-Human Domain Transfer.","authors":"Sai Kumar Reddy Manne, Brendan Martin, Tyler Roy, Ryan Neilson, Rebecca Peters, Meghana Chillara, Christine W Lary, Katherine J Motyl, Michael Wan","doi":"10.1109/cvprw63382.2024.00686","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoclast cell image analysis plays a key role in osteoporosis research, but it typically involves extensive manual image processing and hand annotations by a trained expert. In the last few years, a handful of machine learning approaches for osteoclast image analysis have been developed, but none have addressed the full instance segmentation task required to produce the same output as that of the human expert led process. Furthermore, none of the prior, fully automated algorithms have publicly available code, pretrained models, or annotated datasets, inhibiting reproduction and extension of their work. We present a new dataset with ~2 × 10<sup>5</sup> expert annotated mouse osteoclast masks, together with a deep learning instance segmentation method which works for both in vitro mouse osteoclast cells on plastic tissue culture plates and human osteoclast cells on bone chips. To our knowledge, this is the first work to automate the full osteoclast instance segmentation task. Our method achieves a performance of 0.82 mAP<sub>0.5</sub> (mean average precision at intersection-over-union threshold of 0.5) in cross validation for mouse osteoclasts. We present a novel <b>n</b>uclei-aware <b>o</b>steoclast <b>i</b>nstance <b>se</b>gmentation training strategy (<b>NOISe</b>) based on the unique biology of osteoclasts, to improve the model's generalizability and boost the mAP<sub>0.5</sub> from 0.60 to 0.82 on human osteoclasts. We publish our annotated mouse osteoclast image dataset, instance segmentation models, and code at github.com/michaelwwan/noise to enable reproducibility and to provide a public tool to accelerate osteoporosis research.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"2024 ","pages":"6926-6935"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvprw63382.2024.00686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoclast cell image analysis plays a key role in osteoporosis research, but it typically involves extensive manual image processing and hand annotations by a trained expert. In the last few years, a handful of machine learning approaches for osteoclast image analysis have been developed, but none have addressed the full instance segmentation task required to produce the same output as that of the human expert led process. Furthermore, none of the prior, fully automated algorithms have publicly available code, pretrained models, or annotated datasets, inhibiting reproduction and extension of their work. We present a new dataset with ~2 × 105 expert annotated mouse osteoclast masks, together with a deep learning instance segmentation method which works for both in vitro mouse osteoclast cells on plastic tissue culture plates and human osteoclast cells on bone chips. To our knowledge, this is the first work to automate the full osteoclast instance segmentation task. Our method achieves a performance of 0.82 mAP0.5 (mean average precision at intersection-over-union threshold of 0.5) in cross validation for mouse osteoclasts. We present a novel nuclei-aware osteoclast instance segmentation training strategy (NOISe) based on the unique biology of osteoclasts, to improve the model's generalizability and boost the mAP0.5 from 0.60 to 0.82 on human osteoclasts. We publish our annotated mouse osteoclast image dataset, instance segmentation models, and code at github.com/michaelwwan/noise to enable reproducibility and to provide a public tool to accelerate osteoporosis research.

噪声:核感知破骨细胞实例分割用于小鼠到人的区域转移。
破骨细胞图像分析在骨质疏松症研究中起着关键作用,但它通常涉及大量的人工图像处理和由训练有素的专家手工注释。在过去的几年里,已经开发了一些用于破骨细胞图像分析的机器学习方法,但没有一个解决了产生与人类专家领导的过程相同输出所需的完整实例分割任务。此外,之前的全自动算法都没有公开可用的代码、预训练模型或注释数据集,这抑制了它们工作的复制和扩展。我们提出了一个包含~2 × 105个专家注释的小鼠破骨细胞掩模的新数据集,以及一种深度学习实例分割方法,该方法既适用于塑料组织培养板上的体外小鼠破骨细胞,也适用于骨芯片上的人类破骨细胞。据我们所知,这是第一个自动化完整破骨细胞实例分割任务的工作。我们的方法在小鼠破骨细胞的交叉验证中获得了0.82 mAP0.5的性能(交叉-超结合阈值的平均精度为0.5)。本文基于破骨细胞独特的生物学特性,提出了一种新的核感知破骨细胞实例分割训练策略(NOISe),以提高模型的可泛化性,并将人类破骨细胞的mAP0.5从0.60提高到0.82。我们在github.com/michaelwwan/noise上发布了我们的注释小鼠破骨细胞图像数据集,实例分割模型和代码,以实现可重复性并提供加速骨质疏松症研究的公共工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信