{"title":"Home Automated Telemanagement System for Individualized Exercise Programs: Design and Usability Evaluation.","authors":"Aref Smiley, Joseph Finkelstein","doi":"10.2196/65734","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exercise is essential for physical rehabilitation, helping to improve functional performance and manage chronic conditions. Telerehabilitation offers an innovative way to deliver personalized exercise programs remotely, enhancing patient adherence and clinical outcomes. The Home Automated Telemanagement (HAT) System, integrated with the interactive bike (iBikE) system, was designed to support home-based rehabilitation by providing patients with individualized exercise programs that can be monitored remotely by a clinical rehabilitation team.</p><p><strong>Objective: </strong>This study aims to evaluate the design, usability, and efficacy of the iBikE system within the HAT platform. We assessed the system's ability to enhance patient adherence to prescribed exercise regimens while minimizing patient and clinician burden in carrying out the rehabilitation program.</p><p><strong>Methods: </strong>We conducted a quasi-experimental study with 5 participants using a pre- and posttest design. Usability testing included 2 primary tasks that participants performed with the iBikE system. Task completion times, adherence to exercise protocols, and user satisfaction were measured. A System Usability Scale (SUS) was also used to evaluate participants' overall experience. After an initial introduction, users performed the tasks independently following a 1-week break to assess retention of the system's operation skills and its functionality.</p><p><strong>Results: </strong>Task completion times improved substantially from the pretest to the posttest: execution time for task 1 reduced from a mean of 8.6 (SD 4.7) seconds to a mean of 1.8 (SD 0.8) seconds, and the time for task 2 decreased from a mean of 315 (SD 6.9) seconds to a mean of 303.4 (SD 1.1) seconds. Adherence to the prescribed cycling speed also improved, with deviations from the prescribed speed reduced from a mean of 6.26 (SD 1.00) rpm (revolutions per minute) to a mean of 4.02 (SD 0.82) rpm (t=3.305, n=5, P=.03). SUS scores increased from a mean of 92 (SD 8.6) to a mean of 97 (SD 3.3), indicating high user satisfaction and confidence in system usability. All participants successfully completed both tasks without any additional assistance during the posttest phase, demonstrating the system's ease of use and effectiveness in supporting independent exercise.</p><p><strong>Conclusions: </strong>The iBikE system, integrated into the HAT platform, effectively supports home-based telerehabilitation by enabling patients to follow personalized exercise prescriptions with minimal need for further training or supervision. The significant improvements in task performance and exercise adherence suggest that the system is well-suited for use in home-based rehabilitation programs, promoting sustained patient engagement and adherence to exercise regimens. Further studies with larger sample sizes are recommended to validate these findings and explore the long-term benefits of the system in broader patient populations.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e65734"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/65734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Exercise is essential for physical rehabilitation, helping to improve functional performance and manage chronic conditions. Telerehabilitation offers an innovative way to deliver personalized exercise programs remotely, enhancing patient adherence and clinical outcomes. The Home Automated Telemanagement (HAT) System, integrated with the interactive bike (iBikE) system, was designed to support home-based rehabilitation by providing patients with individualized exercise programs that can be monitored remotely by a clinical rehabilitation team.
Objective: This study aims to evaluate the design, usability, and efficacy of the iBikE system within the HAT platform. We assessed the system's ability to enhance patient adherence to prescribed exercise regimens while minimizing patient and clinician burden in carrying out the rehabilitation program.
Methods: We conducted a quasi-experimental study with 5 participants using a pre- and posttest design. Usability testing included 2 primary tasks that participants performed with the iBikE system. Task completion times, adherence to exercise protocols, and user satisfaction were measured. A System Usability Scale (SUS) was also used to evaluate participants' overall experience. After an initial introduction, users performed the tasks independently following a 1-week break to assess retention of the system's operation skills and its functionality.
Results: Task completion times improved substantially from the pretest to the posttest: execution time for task 1 reduced from a mean of 8.6 (SD 4.7) seconds to a mean of 1.8 (SD 0.8) seconds, and the time for task 2 decreased from a mean of 315 (SD 6.9) seconds to a mean of 303.4 (SD 1.1) seconds. Adherence to the prescribed cycling speed also improved, with deviations from the prescribed speed reduced from a mean of 6.26 (SD 1.00) rpm (revolutions per minute) to a mean of 4.02 (SD 0.82) rpm (t=3.305, n=5, P=.03). SUS scores increased from a mean of 92 (SD 8.6) to a mean of 97 (SD 3.3), indicating high user satisfaction and confidence in system usability. All participants successfully completed both tasks without any additional assistance during the posttest phase, demonstrating the system's ease of use and effectiveness in supporting independent exercise.
Conclusions: The iBikE system, integrated into the HAT platform, effectively supports home-based telerehabilitation by enabling patients to follow personalized exercise prescriptions with minimal need for further training or supervision. The significant improvements in task performance and exercise adherence suggest that the system is well-suited for use in home-based rehabilitation programs, promoting sustained patient engagement and adherence to exercise regimens. Further studies with larger sample sizes are recommended to validate these findings and explore the long-term benefits of the system in broader patient populations.