SpecGMM: Integrating Spectral analysis and Gaussian Mixture Models for taxonomic classification and identification of discriminative DNA regions.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae171
Saish Jaiswal, Hema A Murthy, Manikandan Narayanan
{"title":"SpecGMM: Integrating Spectral analysis and Gaussian Mixture Models for taxonomic classification and identification of discriminative DNA regions.","authors":"Saish Jaiswal, Hema A Murthy, Manikandan Narayanan","doi":"10.1093/bioadv/vbae171","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Genomic signal processing (GSP), which transforms biomolecular sequences into discrete signals for spectral analysis, has provided valuable insights into DNA sequence, structure, and evolution. However, challenges persist with spectral representations of variable-length sequences for tasks like species classification and in interpreting these spectra to identify discriminative DNA regions.</p><p><strong>Results: </strong>We introduce SpecGMM, a novel framework that integrates sliding window-based Spectral analysis with a Gaussian Mixture Model to transform variable-length DNA sequences into fixed-dimensional spectral representations for taxonomic classification. SpecGMM's hyperparameters were selected using a dataset of plant sequences, and applied unchanged across diverse datasets, including mitochondrial DNA, viral and bacterial genome, and 16S rRNA sequences. Across these datasets, SpecGMM outperformed a baseline method, with 9.45% average and 35.55% maximum improvement in test accuracies for a Linear Discriminant classifier. Regarding interpretability, SpecGMM revealed discriminative hypervariable regions in 16S rRNA sequences-particularly V3/V4 for discriminating higher taxa and V2/V3 for lower taxa-corroborating their known classification relevance. SpecGMM's spectrogram video analysis helped visualize species-specific DNA signatures. SpecGMM thus provides a robust and interpretable method for spectral DNA analysis, opening new avenues in GSP research.</p><p><strong>Availability and implementation: </strong>SpecGMM's source code is available at https://github.com/BIRDSgroup/SpecGMM.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae171"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Genomic signal processing (GSP), which transforms biomolecular sequences into discrete signals for spectral analysis, has provided valuable insights into DNA sequence, structure, and evolution. However, challenges persist with spectral representations of variable-length sequences for tasks like species classification and in interpreting these spectra to identify discriminative DNA regions.

Results: We introduce SpecGMM, a novel framework that integrates sliding window-based Spectral analysis with a Gaussian Mixture Model to transform variable-length DNA sequences into fixed-dimensional spectral representations for taxonomic classification. SpecGMM's hyperparameters were selected using a dataset of plant sequences, and applied unchanged across diverse datasets, including mitochondrial DNA, viral and bacterial genome, and 16S rRNA sequences. Across these datasets, SpecGMM outperformed a baseline method, with 9.45% average and 35.55% maximum improvement in test accuracies for a Linear Discriminant classifier. Regarding interpretability, SpecGMM revealed discriminative hypervariable regions in 16S rRNA sequences-particularly V3/V4 for discriminating higher taxa and V2/V3 for lower taxa-corroborating their known classification relevance. SpecGMM's spectrogram video analysis helped visualize species-specific DNA signatures. SpecGMM thus provides a robust and interpretable method for spectral DNA analysis, opening new avenues in GSP research.

Availability and implementation: SpecGMM's source code is available at https://github.com/BIRDSgroup/SpecGMM.

SpecGMM:整合光谱分析和高斯混合模型用于分类分类和鉴别DNA区域。
动机:基因组信号处理(GSP)将生物分子序列转化为离散信号进行光谱分析,为DNA序列、结构和进化提供了有价值的见解。然而,在物种分类和解释这些光谱以识别有区别的DNA区域等任务中,变长序列的光谱表示仍然存在挑战。结果:我们引入了一个新的框架SpecGMM,它将基于滑动窗口的光谱分析与高斯混合模型相结合,将变长DNA序列转换为固定维的光谱表示,用于分类分类。SpecGMM的超参数是使用植物序列数据集选择的,并在不同的数据集上保持不变,包括线粒体DNA、病毒和细菌基因组以及16S rRNA序列。在这些数据集中,SpecGMM优于基线方法,线性判别分类器的测试准确率平均提高9.45%,最大提高35.55%。在可解释性方面,SpecGMM在16S rRNA序列中发现了判别性高变区,特别是V3/V4区用于区分高级分类群,V2/V3区用于区分低级分类群,证实了它们已知的分类相关性。SpecGMM的光谱图视频分析有助于可视化特定物种的DNA特征。因此,SpecGMM为光谱DNA分析提供了一种强大且可解释的方法,为GSP研究开辟了新的途径。可用性和实现:SpecGMM的源代码可从https://github.com/BIRDSgroup/SpecGMM获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信