Perry T Wasdin, Alexandra A Abu-Shmais, Michael W Irvin, Matthew J Vukovich, Ivelin S Georgiev
{"title":"Negative binomial mixture model for identification of noise in antibody-antigen specificity predictions from single-cell data.","authors":"Perry T Wasdin, Alexandra A Abu-Shmais, Michael W Irvin, Matthew J Vukovich, Ivelin S Georgiev","doi":"10.1093/bioadv/vbae170","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>LIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in single-cell B cell receptor sequencing data, such as LIBRA-seq, is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies.</p><p><strong>Results: </strong>In this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages single-cell sequencing reads from a large, multi-donor dataset described in a recent LIBRA-seq study to develop a data-driven means for identification of technical noise. We apply this method to nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for <i>in vitro</i> antibody-antigen binding when compared to the standard scoring method, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for machine learning based approaches as the corpus of single-cell B cell sequencing data continues to grow.</p><p><strong>Availability and implementation: </strong>All data and code are available at https://github.com/IGlab-VUMC/mixture_model_denoising.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae170"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: LIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in single-cell B cell receptor sequencing data, such as LIBRA-seq, is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies.
Results: In this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages single-cell sequencing reads from a large, multi-donor dataset described in a recent LIBRA-seq study to develop a data-driven means for identification of technical noise. We apply this method to nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for in vitro antibody-antigen binding when compared to the standard scoring method, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for machine learning based approaches as the corpus of single-cell B cell sequencing data continues to grow.
Availability and implementation: All data and code are available at https://github.com/IGlab-VUMC/mixture_model_denoising.