Spontaneous breaking of symmetry in overlapping cell instance segmentation using diffusion models.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2024-11-09 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae084
Julius B Kirkegaard
{"title":"Spontaneous breaking of symmetry in overlapping cell instance segmentation using diffusion models.","authors":"Julius B Kirkegaard","doi":"10.1093/biomethods/bpae084","DOIUrl":null,"url":null,"abstract":"<p><p>Instance segmentation is the task of assigning unique identifiers to individual objects in images. Solving this task requires breaking the inherent symmetry that semantically similar objects must result in distinct outputs. Deep learning algorithms bypass this break-of-symmetry by training specialized predictors or by utilizing intermediate label representations. However, many of these approaches break down when faced with overlapping labels that are ubiquitous in biomedical imaging, for instance for segmenting cell layers. Here, we discuss the reason for this failure and offer a novel approach for instance segmentation based on diffusion models that breaks this symmetry spontaneously. Our method outputs pixel-level instance segmentations matching the performance of models such as cellpose on the cellpose fluorescent cell dataset, while also permitting overlapping labels.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae084"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Instance segmentation is the task of assigning unique identifiers to individual objects in images. Solving this task requires breaking the inherent symmetry that semantically similar objects must result in distinct outputs. Deep learning algorithms bypass this break-of-symmetry by training specialized predictors or by utilizing intermediate label representations. However, many of these approaches break down when faced with overlapping labels that are ubiquitous in biomedical imaging, for instance for segmenting cell layers. Here, we discuss the reason for this failure and offer a novel approach for instance segmentation based on diffusion models that breaks this symmetry spontaneously. Our method outputs pixel-level instance segmentations matching the performance of models such as cellpose on the cellpose fluorescent cell dataset, while also permitting overlapping labels.

基于扩散模型的重叠细胞实例分割中对称性的自发破缺。
实例分割是为图像中的单个对象分配唯一标识符的任务。解决这个问题需要打破固有的对称性,即语义相似的对象必须产生不同的输出。深度学习算法通过训练专门的预测器或利用中间标签表示来绕过这种对称性破坏。然而,当面临生物医学成像中普遍存在的重叠标记时,例如分割细胞层时,许多这些方法都失败了。在这里,我们讨论了这种失败的原因,并提供了一种基于扩散模型的实例分割的新方法,该方法自发地打破了这种对称性。我们的方法输出像素级实例分割,与cellpose荧光细胞数据集上的cellpose等模型的性能相匹配,同时还允许重叠标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信