Qishan Liang, Joy S Xiang, Gene W Yeo, Kevin D Corbett
{"title":"Rational design yields RNA-binding zinc finger domains with altered sequence specificity.","authors":"Qishan Liang, Joy S Xiang, Gene W Yeo, Kevin D Corbett","doi":"10.1261/rna.080329.124","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting and manipulating endogenous RNAs in a sequence-specific manner is essential for both understanding RNA biology and developing RNA-targeting therapeutics. RNA-binding zinc fingers (ZnFs) are excellent candidates as designer proteins to expand the RNA-targeting toolbox, due to their compact size and modular sequence recognition. Currently, little is known about how the sequence of RNA-binding ZnF domains governs their binding site specificity. Here, we systematically introduced mutations at the RNA-contacting residues of a well-characterized RNA-binding ZnF protein, ZRANB2, and measured RNA binding of mutant ZnFs using a modified RNA bind-n-seq assay. We identified mutant ZnFs with an altered sequence specificity, preferring to bind a GGG motif instead of the GGU preferred by wild-type ZRANB2. Further, through a series of all-atom molecular dynamics simulations with ZRANB2 and RNA, we characterized changes in the hydrogen-bond network between the protein and RNA that underlie the observed sequence specificity changes. Our analysis of ZRANB2-RNA interactions both in vitro and in silico expands the understanding of ZnF-RNA recognition rules and serves as a foundation for eventual use of RNA-binding ZnFs for programmable RNA targeting.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"150-163"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080329.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting and manipulating endogenous RNAs in a sequence-specific manner is essential for both understanding RNA biology and developing RNA-targeting therapeutics. RNA-binding zinc fingers (ZnFs) are excellent candidates as designer proteins to expand the RNA-targeting toolbox, due to their compact size and modular sequence recognition. Currently, little is known about how the sequence of RNA-binding ZnF domains governs their binding site specificity. Here, we systematically introduced mutations at the RNA-contacting residues of a well-characterized RNA-binding ZnF protein, ZRANB2, and measured RNA binding of mutant ZnFs using a modified RNA bind-n-seq assay. We identified mutant ZnFs with an altered sequence specificity, preferring to bind a GGG motif instead of the GGU preferred by wild-type ZRANB2. Further, through a series of all-atom molecular dynamics simulations with ZRANB2 and RNA, we characterized changes in the hydrogen-bond network between the protein and RNA that underlie the observed sequence specificity changes. Our analysis of ZRANB2-RNA interactions both in vitro and in silico expands the understanding of ZnF-RNA recognition rules and serves as a foundation for eventual use of RNA-binding ZnFs for programmable RNA targeting.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.