{"title":"Tumor exosomal RNPEP promotes lung metastasis of liver cancer via inducing cancer-associated fibroblast activation.","authors":"Yuankun Chen, Gaofeng Pan, Yijun Yang, Haifeng Wu, Minhua Weng, Qiuping Wu, Yufeng Gao, Wenting Li","doi":"10.1111/cas.16417","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are essential players in the tumor microenvironment (TME) due to their roles in facilitating tumor progression and metastasis. It is worth noting that the high-metastatic hepatocellular carcinoma (HCC) cell-derived exosomes have exhibited the ability to transform normal fibroblasts into CAFs, which further fosters the lung metastasis of low-metastatic HCC cells. Yet, the mechanisms underlying this tumor exosome-induced metastatic niche formation are poorly explored. In this study, the secreted protein arginyl aminopeptidase (RNPEP) was highly expressed in the plasma of patients with HCC. In addition, high-metastatic HCC cells showed augmented RNPEP expression levels in their exosomes. These exosomes induced obvious CAF-like properties in the human fibroblast cell line MRC-5, as evidenced by the increased CAF marker expression, and enhanced migratory ability. More strikingly, the secretions from high-metastatic tumor exosome-educated MRC-5 cells increased tumor stemness and promoted epithelial-mesenchymal transition (EMT) in MHCC-97L cells, a low-metastatic HCC cell line. However, the knockdown of RNPEP in exosomes from high-metastatic HCC cells abated the changes described above. Animal studies in vivo highlighted the pro-tumor and pro-metastatic effects of exosomal RNPEP on MHCC-97L cells by inducing CAF activation. Furthermore, tumor-derived exosomal RNPEP induced the activation of NF-κB signaling in MRC-5 cells, a critical pathway associated with CAF activation. Collectively, these results provide novel insight into tumor-derived exosomal RNPEP for its crosstalk with CAFs during HCC lung metastasis.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.16417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer-associated fibroblasts (CAFs) are essential players in the tumor microenvironment (TME) due to their roles in facilitating tumor progression and metastasis. It is worth noting that the high-metastatic hepatocellular carcinoma (HCC) cell-derived exosomes have exhibited the ability to transform normal fibroblasts into CAFs, which further fosters the lung metastasis of low-metastatic HCC cells. Yet, the mechanisms underlying this tumor exosome-induced metastatic niche formation are poorly explored. In this study, the secreted protein arginyl aminopeptidase (RNPEP) was highly expressed in the plasma of patients with HCC. In addition, high-metastatic HCC cells showed augmented RNPEP expression levels in their exosomes. These exosomes induced obvious CAF-like properties in the human fibroblast cell line MRC-5, as evidenced by the increased CAF marker expression, and enhanced migratory ability. More strikingly, the secretions from high-metastatic tumor exosome-educated MRC-5 cells increased tumor stemness and promoted epithelial-mesenchymal transition (EMT) in MHCC-97L cells, a low-metastatic HCC cell line. However, the knockdown of RNPEP in exosomes from high-metastatic HCC cells abated the changes described above. Animal studies in vivo highlighted the pro-tumor and pro-metastatic effects of exosomal RNPEP on MHCC-97L cells by inducing CAF activation. Furthermore, tumor-derived exosomal RNPEP induced the activation of NF-κB signaling in MRC-5 cells, a critical pathway associated with CAF activation. Collectively, these results provide novel insight into tumor-derived exosomal RNPEP for its crosstalk with CAFs during HCC lung metastasis.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.