Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Katerina-Marina Pilala, Konstantina Panoutsopoulou, Maria-Alexandra Papadimitriou, Konstantinos Soureas, Andreas Scorilas, Margaritis Avgeris
{"title":"Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome.","authors":"Katerina-Marina Pilala, Konstantina Panoutsopoulou, Maria-Alexandra Papadimitriou, Konstantinos Soureas, Andreas Scorilas, Margaritis Avgeris","doi":"10.1016/j.ymthe.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.12.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.

探索甲基化:表观基因组和m6A表转录组的动态相互作用。
动态表观遗传修饰和表转录组修饰的协调是基因表达微调的关键。然而,传统上,它们是被独立审查的。最近令人信服的研究揭示了m6A RNA甲基化(m6A表转录组)和表观遗传修饰之间有趣的交流和相互作用,使反馈回路和合作网络的形成成为可能。有趣的是,m6A和DNA甲基化机制之间的相互作用,加上m6A RNA和组蛋白修饰之间的串扰,形成了转录谱和翻译效率。此外,m6A修饰也与非编码rna相互作用,调节它们的稳定性、丰度和调控功能。根据这些发现,m6A印迹作为一个多功能检查点,连接表观遗传和表转录组层,实现基因表达和细胞稳态的多层和时间依赖性控制。本综述的范围是破译m6a与DNA印迹、染色质结构和非编码rna网络在正常生理和癌变中的协调回路。最后,我们总结了融合m6A催化组分(m6A写入器或擦除器)的创新CRISPR/dCas工程平台的发展,以实现m6A表转录组的转录特异性编辑,这可以为现代RNA治疗提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信